
 

 
SANDIA REPORT 
SAND2013-	
  8752 
Unlimited Release 
Printed October 2013 
 
 

HPCG Technical Specification 
 
 
Michael A. Heroux, Sandia National Laboratories1 
Jack Dongarra and Piotr Luszczek, University of Tennessee 
 
 
 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,  
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's  
National Nuclear Security Administration under contract DE-AC04-94AL85000. 
 
Approved for public release; further dissemination unlimited. 
 
 
 
 
 
 
	
  
 
 
 
 
 
 
 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Corresponding Author, maherou@sandia.gov 



2 

 
 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy 
by Sandia Corporation. 
 
NOTICE:  This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government, nor any agency thereof, 
nor any of their employees, nor any of their contractors, subcontractors, or their employees, 
make any warranty, express or implied, or assume any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors.  The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency thereof, or any 
of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN  37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@adonis.osti.gov 
 Online ordering: http://www.osti.gov/bridge 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Rd. 
 Springfield, VA  22161 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.fedworld.gov 
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 
 
 

 
 

 



3 

SAND2013-	
  8752 
Unlimited Release 
Printed October 2013 
 
 

HPCG Benchmark Technical Specification 
 
 

Michael A. Heroux 
Scalable Algorithm Department 

Sandia National Laboratories 
P.O. Box 5800 

Albuquerque, New Mexico  87185-MS 1320 
 

Jack Dongarra 
Piotr Luszczek 

Electrical Engineering and Computer Science Department   
1122 Volunteer Blvd  University of Tennessee   

Knoxville, TN 37996-3450 
 
 

Abstract 
 

.  
The High Performance Conjugate Gradient (HPCG) benchmark [2] is a tool for ranking 
computer systems based on a simple additive Schwarz, symmetric Gauss-Seidel preconditioned 
conjugate gradient solver.  HPCG is similar in its purpose to High Performance Linpack (HPL) 
currently used to rank systems as part of the Top 500 benchmark [1], but HPCG is intended to 
better represent how today’s applications perform.   
 
In this paper we describe the technical details of HPCG:  how it is designed and implemented, 
what code transformations are permitted and how to interpret and report results. 
 



 

 4 

 
ACKNOWLEDGMENTS 
 
The authors thank the Department of Energy National Nuclear Security Agency for funding 
provided for this work. We also thank Simon Hammond, Mahesh Rajan, Doug Doerfler and 
Christian Trott for their efforts to test early versions of HPCG and give valuable feedback. 
 



 

 5 

CONTENTS 
 

1.	
   Introduction .............................................................................................................................. 7	
  
2.	
   HPCG Model Problem Description ......................................................................................... 7	
  
3.	
   HPCG Design .......................................................................................................................... 9	
  
4.	
   HPCG Implementation ........................................................................................................... 12	
  
5.	
   HPCG Testing ........................................................................................................................ 12	
  
6.	
   Permitted Transformations and Optimizations ...................................................................... 12	
  
7.	
   How To Report HPCG Benchmark Results ........................................................................... 12	
  
8.	
   FAQs ...................................................................................................................................... 13	
  
9.	
   Related Work and Future Adaptations ................................................................................... 14	
  
10.	
   Summary and Conclusions .................................................................................................. 15	
  
11.	
   References ............................................................................................................................ 16	
  
Distribution ................................................................................................................................... 19	
  
	
   	
  



 

 6 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

This	
  page	
  is	
  intentionally	
  left	
  blank. 
 
	
    



 

 7 

1. INTRODUCTION 
 
The High Performance Conjugate Gradient (HPCG) benchmark is a simple program that 
generates a synthetic sparse linear system that is mathematically similar to a finite element, finite 
volume or finite difference discretizations of a three-dimensional heat diffusion problem on a 
semi-regular grid.  The problem is solved using domain decomposition with an additive Schwarz 
preconditioned conjugate gradient method where each subdomain is preconditioned using a 
symmetric Gauss-Seidel sweep.  This document provides a technical description of the 
benchmark and is a companion to Toward a New Metric for Ranking High Performance 
Computing Systems [2]. 
 
 

2. HPCG MODEL PROBLEM DESCRIPTION 
 
The HPCG benchmark generates a synthetic discretized three-dimensional partial differential 
equation model problem, and computes preconditioned conjugate gradient iterations for the 
resulting sparse linear system.  The model problem can be interpreted as a single degree of 
freedom heat diffusion model with zero Dirichlet boundary conditions.  The global domain 
dimensions are (nx *npx )× (ny *npy )× (nxz *npz )where (nx × ny × nz )  are the local subgrid 
dimensions in the x, y, and z dimensions, respectively, assigned to each MPI process.  These 
values are read from the data file hpcg.dat, or are passed in as command line arguments.  The 
dimensions (npx × npy × npz ) , are a factoring of the MPI process space that is computed 
automatically in the HPCG setup phase.   We impose ratio restrictions on both the local and 
global x, y and z dimensions, which are enforced in the setup phase of HPCG. 
 
The setup phase constructs a logically global, physically distributed sparse linear system using a 
27-point stencil at each grid point in the 3D domain such that the equation at point (i, j, k) 
depends the values at its location and its 26 surrounding neighbors.  The matrix is constructed to 
be weakly diagonally dominant for interior points of the global domain, and strongly diagonally 
dominant for boundary points, reflecting a synthetic conservation principle for the interior points 
and the impact of zero Dirichlet boundary values on the boundary equations.  The resulting 
sparse linear system has the following properties:  

- A sparse matrix with 27 nonzero entries per row for interior 
equations and 7 to 18 nonzero terms for boundary equations. 

- A symmetric, positive definite, nonsingular linear operator. 
- A generated known exact solution vector with all values 

equal to 1.0. 
- A matching right-hand-side vector. 
- An initial guess of all zeros. 

 
The central purpose of defining this sparse linear system is to 
provide a rich vehicle for executing a collection of important 
computational kernels embodied in the preconditioned conjugate gradient method shown in 
Figure 1.  However, the benchmark is not about computing a high fidelity solution to this 
problem.  In fact iteration counts are fixed in the benchmark code and we do not expect 



 

 8 

convergence to the solution, regardless of problem size.  We do use the spectral properties of 
both the problem and the preconditioned conjugate gradient algorithm as part of software testing.  
See Section 5 for details. 
 
Example of parameter settings: Suppose that we have compiled HPCG with the default MPI 
and OpenMP modes enabled.  Then, assuming a bash Linux terminal window, the following 
commands from the build/bin directory: 
 export OMP_NUM_THREADS=1 
 mpiexec –n 96 ./xhpcg 70 80 90 
will result in: 

• nx = 70,  ny = 80,  nz = 90  
• npx = 4,  npy = 4,  npz = 6  
• Global domain dimensions: 280-by-320-by-540 
• Number of equations per MPI process: 504,000 
• Global number of equations:     48,384,000 
• Global number of nonzeros: 1,298,936,872 

 
Note that changing the value of OMP_NUM_THREADS does not change the problem size or 
dimensions.  It only changes how many threads are active within each MPI process. 

	
    
CG ALGORITHM 

• p0 := x0, r0 := b-Ap0 
• Loop i = 1, 2, … 

ozi := M-1ri-1 
oif i = 1 

§ pi := zi 
§ αi := dot_product(ri-1, z) 

oelse 
§ αi := dot_product(ri-1, z) 
§ βi := αi/αi-1 
§ pi := βi*pi-1+zi 

oend if 
oαi := dot_product(ri-1, zi) /dot_product(pi, A*pi) 
oxi+1 := xi + αi*pi 
ori := ri-1 – αi*A*pi 
oif ||ri||2 < tolerance then Stop 

• end Loop 
	
  
	
  
	
  

Figure 1: Basic Preconditioned Conjugate Gradient Algorithm 



 

 9 

3. HPCG DESIGN 
 
HPCG has a single main program hpcg/testing/main.cpp.  The flow of execution is shown in 
Figure 2.  

 
The HPCG code executes the following: 
 

1. Problem setup:   
a. Call GenerateGeometry to construct the geometry based on the input parameters 

for the local subdomain size and number of MPI processes as described in Section 
2. 

b. Call GenerateProblem to generate a synthetic symmetric positive definite (SPD) 
matrix A using an array-of-pointers-style compressed sparse row format, an exact 

 
Figure 2: HPCG Execution Phases. 
 



 

 10 

solution vector of all 1.0 values, a corresponding right-hand-side vector b, and 
initial guess for x of all 0.0 values.   

c. Call SetupHalo to setup the halo region needed for efficient exchange of off-
processor elements prior to computing the sparse matrix-vector product (called in 
ComputeSpMV).   

d. Call InitializeSparseCGData to set up data structures for sparse matrix 
multiplication and the local symmetric Gauss-Seidel preconditioner.  

e. Call OptimizeProblem to execute user-defined optimizations.   
i. Permitted optimizations are limited to: 

1. Changes in sparse matrix data structures that enable better memory 
access patterns.  Such changes expressly do not permit elimination 
of indirect addressing of the input vector for either the 
ComputeSPMV or ComputeSYMGS kernels or simplified 
floating point representations of data elements. 

2. Permutations of the linear system to improve data parallelism.   
ii. Prohibited optimizations: 

1. Any other modifications must first be proposed to the HPCG 
development team.  Generally speaking, optimizations that 
circumvent the intention of the benchmark as a driver for 
common computational kernels are not permitted.   

2. Although the matrix pattern may be regular, or nearly so, and 
value-symmetric, matrix storage is to be treated as unstructured 
and all matrix values are to be retained and used to full precision.  
The benchmarker is prohibited from exploiting regularity by using, 
for example, a sparse diagonal format and is prohibited from 
exploiting value symmetry to reduce storage requirements. 

iii. The time taken for  this phase (any optimization in data structure 
performed) is counted in the final performance measurement.  The cost if 
this phase is added to the cost of executing a single CG iteration set 
(which is the equivalent residual drop of 50 iterations of the reference CG 
implementation). 

2. Verification and validation testing:  In order to assure correct implementation and 
execution of the optimized version of HPCG, we use the properties of conjugate gradients 
and the symmetry of the linear operator and preconditioner as validation tests. 

a. Spectral tests (CGtest):   
i. In this test, we modify the matrix diagonal temporarily such that the first 

nine diagonals are defined numerically to be (2 x106, 3 x106, 4 x106, …, 
10 x106).  All remaining diagonal values are set to 1 x106.  The off-
diagonal values are unmodified but are so small that the matrix looks 
spectrally like a diagonal matrix with 10 distinct diagonal values and 
therefore 10 distinct eigenvalues.   

ii. By construction, regardless of problem size, the unpreconditioned 
conjugate gradient algorithm should converge in 11 or 12 iterations. 

iii. Similarly, preconditioned CG using symmetric Gauss-Seidel should 
converge in one iteration, since the preconditioner has the effect of scaling 
the diagonal terms to be of the same magnitude. 



 

 11 

b. Symmetry tests (Symtest): 
i. In this test we confirm the symmetry of the matrix and preconditioner 

functions by computing two scalar products that are mathematically 
identical for symmetric operators. 

ii. Using two pseudo-random vectors x and y, and the user implementations 
of ComputeSPMV to apply the matrix A  and ComputeSYMGS to apply 
the preconditioner M we compute two scalar values: 

1. Departure from symmetry for SPMV: (xTAy − yTAx) . 
2. Departure from symmetry for SYMGS: (xTM −1y − yTM −1x) . 

c. SPMV testing: Using the exact solution vector, we compare the result generated 
by ComputeSPMV with the known RHS vector. 

3. Reference Sparse MV and Gauss-Seidel timing:  We run the reference kernels for use 
in our output report. 

4. Reference CG timing and residual reduction: We will report the reference CG timing 
results in the output.  We run the reference CG solver for a fixed number of iterations 
(50) and record the reduction in the residual.  The optimized CG solver must also achieve 
the same residual reduction even if it requires more iterations.   

5. Optimized CG Setup: We run the optimized CG solver until it reaches the same residual 
reduction as the reference CG solver.  

a. The time required to execute this run and the number of iterations required to 
achieve the residual drop are both recorded. 

b. Using the execution time of a single call to the optimized CG solver (a single set), 
we compute how many sets of runs are required. 

c. The number of iterations required to achieve the required residual drop is called 
numberOfOptCgIters.  If the optimized CG does not differ from the reference 
CG convergence behavior, this value will be 50. 

d. The number of CG sets required to fill the benchmark time requirement is called 
numberOfCgSets. 

6. Optimized CG timing and analysis (Benchmark phase):  We now finally run the 
benchmark phase of HPCG.  Here we run the optimized CG solver numberOfCgSets 
times, and each time run the solver for numberOfOptCgIters iterations. 

a. The residual value of each set is recorded as a unique value.  At the end of the 
benchmark phase we compute, analyze and report the mean value of all recorded 
residuals and the variance.   

b. Small perturbations of the residual are permitted.  These can occur because of 
variations in the order of floating point computations.  For example, OpenMP 
execution of a dot-product typically changes the order of summation and leads to 
minor (round-off error) perturbations in the final dot-product result. 

7. Post-processing and reporting:  We will report a single timing result, and other metrics. 
a. Computational verification and validation metrics are reported.   
b. Timing and execution rate results are reported.  
c. Pass/fail information is reported, as is an email address where results can be 

submitted. 
 
	
    



 

 12 

4. HPCG REFERENCE IMPLEMENTATION 
	
  

The reference HPCG code is implemented in C++ using MPI and OpenMP and	
  makes	
  some	
  
use	
  of	
  the	
  C++	
  standard	
  libraries	
  and	
  container	
  classes.	
  	
  While	
  it	
  is	
  certainly	
  possible	
  to	
  
write	
  the	
  same	
  functionality	
  in	
  C,	
  many	
  applications	
  rely	
  on	
  high-­‐level	
  C++	
  features	
  for	
  
improved	
  developer	
  productivity.	
  	
  We	
  want	
  HPCG	
  to	
  reflect	
  the	
  language	
  needs	
  of	
  users	
  as	
  
part	
  of	
  this	
  benchmark.	
  
	
  
Even	
  though	
  standard	
  libraries	
  and	
  containers	
  are	
  used	
  in	
  HPCG,	
  all	
  computations	
  in	
  the	
  
benchmark	
  phase	
  are	
  performed	
  using	
  simple	
  for-­‐loops	
  and	
  arrays,	
  which	
  are	
  easily	
  
converted	
  to	
  C	
  or	
  Fortran	
  equivalents.	
  
	
  
	
  

5. HPCG TESTING 
	
  
HPCG	
  uses	
  basic	
  spectral	
  properties	
  of	
  the	
  conjugate	
  gradient	
  algorithm	
  in	
  order	
  to	
  confirm	
  
that	
  the	
  implementation	
  used	
  in	
  the	
  benchmark	
  has	
  expected	
  behavior.	
  	
  In	
  particular,	
  for	
  a	
  
matrix	
  with	
  k	
  distinct	
  eigenvalues,	
  CG	
  should	
  take	
  k	
  iteration	
  to	
  reach	
  convergence,	
  in	
  exact	
  
arithmetic.	
  	
  We	
  temporarily	
  	
  make	
  one	
  run	
  where	
  we	
  have	
  a	
  modify	
  the	
  diagonal	
  of	
  our	
  
matrix	
  so	
  that	
  there	
  are	
  only	
  10	
  distinct	
  values	
  (2 x106,	
  3 x106,	
  4 x106,	
  5 x106,	
  6 x106,	
  7 x106,	
  
8 x106,	
  9 x106,	
  10 x106).	
  	
  The	
  remaining	
  diagonal	
  values	
  are	
  set	
  to	
  1	
  x	
  106.	
  	
  Although	
  the	
  off-­‐
diagonal	
  values	
  remain	
  nonzero	
  and	
  unchanged,	
  they	
  are	
  of	
  magnitude	
  1.0	
  and	
  have	
  little	
  
influence	
  on	
  the	
  spectral	
  behavior	
  of	
  the	
  linear	
  operator.	
  	
  After	
  performing	
  the	
  spectral	
  
tests,	
  we	
  restore	
  the	
  original	
  matrix	
  diagonal	
  values.	
  
	
  
For	
  unpreconditioned	
  CG	
  (which	
  is	
  selected	
  by	
  a	
  bool	
  argument	
  to	
  CG),	
  we	
  should	
  expect	
  a	
  
bit	
  more	
  than	
  10	
  iterations	
  to	
  converge.	
  	
  The	
  symmetric	
  Gauss-­‐Seidel	
  	
  preconditioned	
  CG	
  
should	
  converge	
  in	
  about	
  1	
  iteration,	
  since	
  this	
  preconditioner	
  behaves	
  like	
  Jacobi	
  scaling	
  
(only	
  the	
  large	
  diagonal	
  values	
  really	
  matter)	
  and	
  the	
  scaling	
  makes	
  all	
  diagonals	
  appear	
  to	
  
be	
  1.0,	
  so	
  CG	
  should	
  require	
  about	
  1	
  iteration.	
  
	
  

6. PERMITTED TRANSFORMATIONS AND OPTIMIZATIONS 
	
  
What	
  can	
  and	
  cannot	
  be	
  changed:	
  

• User	
  is	
  not	
  allowed	
  to	
  change	
  the	
  basic	
  CG	
  algorithm	
  or	
  preconditioner	
  algorithm.	
  
• User	
  can	
  change	
  coding	
  for	
  the	
  preconditioner	
  but	
  must	
  use	
  the	
  same	
  

mathematical	
  preconditioner.	
  
• User	
  is	
  allowed	
  to	
  change	
  the	
  coding	
  for	
  ComputeDOT,	
  ComputeWAXPBY,	
  

ComputeSPMV	
  and	
  ComputeSYMGS.	
  
• User	
  is	
  not	
  allowed	
  to	
  change	
  the	
  matrix	
  data	
  (numerical	
  entries).	
  
• User	
  can	
  change	
  the	
  storage	
  format,	
  but	
  the	
  time	
  to	
  change	
  is	
  recorded	
  and	
  used	
  

in	
  the	
  computations	
  of	
  the	
  performance	
  rate.	
  
	
  

7. HOW TO REPORT HPCG BENCHMARK RESULTS 
	
  



 

 13 

All	
  results	
  are	
  recorded	
  in	
  the	
  HPCG-­‐Benchmark-­‐<identifier>.yaml	
  file.	
  	
  Instructions	
  
for	
  reporting	
  these	
  results	
  are	
  at	
  the	
  end	
  of	
  this	
  file.	
  	
  YAML	
  is	
  a	
  human-­‐readable	
  format	
  
that	
  is	
  also	
  convertible	
  to	
  XML	
  and	
  other	
  hierarchical	
  formats,	
  making	
  it	
  easier	
  to	
  
manage	
  output	
  as	
  database	
  records.	
  
	
  
The	
  Output	
  Results:	
  See	
  generated	
  results	
  after	
  running	
  the	
  benchmark.	
  

	
  
8. FAQS 

	
  
Most	
  of	
  the	
  information	
  in	
  this	
  section	
  can	
  be	
  found	
  in	
  other	
  parts	
  of	
  this	
  document,	
  but	
  we	
  
repeat	
  it	
  here	
  for	
  convenience.	
  
	
  

1. The	
  sparsity	
  pattern	
  of	
  the	
  synthetic	
  matrix	
  is	
  really	
  a	
  regular	
  27-­‐point	
  3-­‐
dimensional	
  stencil	
  pattern.	
  	
  Can	
  I	
  take	
  advantage	
  of	
  this	
  and	
  eliminate	
  the	
  
indirect	
  access	
  in	
  the	
  ComputeSPMV	
  and	
  ComputeSYMGS	
  kernels?	
  
	
  
No.	
  	
  In	
  order	
  to	
  make	
  the	
  HPCG	
  benchmark	
  simple	
  to	
  design,	
  implement	
  and	
  
understand,	
  we	
  have	
  used	
  a	
  simple	
  synthetic	
  problem	
  generator.	
  	
  However,	
  you	
  may	
  
not	
  explicitly	
  take	
  advantage	
  of	
  this	
  latent	
  structure.	
  	
  Specifically,	
  you	
  must	
  access	
  
vector	
  data	
  indirectly	
  in	
  the	
  ComputeSPMV	
  and	
  ComputeSYMGS	
  kernels.	
  	
  You	
  must	
  
also	
  use	
  standard	
  double	
  precision	
  arithmetic	
  for	
  every	
  phase	
  of	
  the	
  computation.	
  
	
  

2. The	
  matrix	
  in	
  this	
  problem	
  is	
  symmetric.	
  	
  Can	
  I	
  take	
  advantage	
  of	
  symmetry	
  to	
  
reduce	
  storage	
  and	
  data	
  access	
  costs?	
  
	
  
No.	
  	
  Although	
  the	
  problem	
  is	
  symmetric,	
  all	
  computational	
  kernels	
  must	
  use	
  the	
  
matrix	
  as	
  though	
  it	
  were	
  non-­‐symmetric.	
  
	
  

3. A	
  mathematically	
  equivalent	
  operator	
  that	
  uses	
  much	
  less	
  storage	
  easily	
  
represents	
  the	
  linear	
  operator	
  associated	
  with	
  this	
  matrix.	
  	
  Can	
  I	
  substitute	
  
the	
  ComputeSPMV	
  and	
  ComputeSYMGS	
  kernels	
  with	
  mathematically	
  
equivalent	
  operators?	
  
	
  
No.	
  	
  The	
  only	
  permitted	
  optimizations	
  for	
  ComputeSPMV	
  and	
  ComputeSYMGS	
  are	
  
permutations	
  that	
  expose	
  greater	
  potential	
  for	
  concurrent	
  execution	
  of	
  the	
  required	
  
arithmetic	
  for	
  these	
  kernels.	
  	
  You	
  may	
  also	
  introduce	
  nonzero	
  entries	
  (that	
  have	
  
zero	
  values)	
  in	
  order	
  to	
  increase	
  the	
  efficiency	
  of	
  using	
  the	
  sparsity	
  pattern.	
  	
  
However,	
  you	
  may	
  not	
  in	
  any	
  way	
  eliminate	
  terms	
  in	
  the	
  matrix.	
  
	
  

4. I	
  have	
  permuted	
  the	
  matrix	
  structure	
  so	
  that	
  the	
  ComputeSYMGS	
  kernel	
  runs	
  
faster	
  (better	
  vectorization	
  and	
  more	
  thread	
  parallelism).	
  	
  However,	
  I	
  am	
  now	
  
performing	
  more	
  iterations	
  in	
  order	
  to	
  reach	
  the	
  residual	
  drop	
  prescribed	
  by	
  
the	
  reference	
  CG	
  solver.	
  	
  Can	
  I	
  count	
  the	
  extra	
  operations	
  as	
  part	
  of	
  my	
  total	
  
operation	
  count	
  when	
  computing	
  the	
  final	
  GFLOP/s	
  rating?	
  



 

 14 

No.	
  	
  The	
  loss	
  of	
  convergence	
  rate	
  due	
  to	
  the	
  transformation	
  reflects	
  the	
  trade-­‐off	
  
between	
  parallelism	
  and	
  robustness	
  and	
  is	
  considered	
  part	
  of	
  the	
  overhead	
  cost.	
  

5. The	
  analysis	
  I	
  perform	
  in	
  OptimizeProblem	
  is	
  fairly	
  expensive.	
  	
  Must	
  it	
  be	
  
counted	
  as	
  part	
  of	
  the	
  total	
  execution	
  time	
  in	
  my	
  GFLOP/s	
  rating?	
  
	
  
Yes.	
  	
  However,	
  this	
  setup	
  cost	
  is	
  added	
  to	
  the	
  total	
  cost	
  of	
  running	
  one	
  set	
  of	
  
optimized	
  CG	
  iterations,	
  so	
  the	
  setup	
  cost	
  is	
  amortized.	
  
	
  
	
  

9. RELATED WORK AND FUTURE ADAPTATIONS 
 
Evolution of HPCG Benchmark 
 
Regardless of which specific benchmark we propose, we expect it to evolve.  HPL[3] started as a 
simple 100-by-100 dense factorization, then a 1000-by-1000, and now places no restrictions on 
problem size.  Furthermore, the algorithms used to compute the factorization have changed 
dramatically; modified to take advantage of distributed memory, changes in network architecture 
and multicore CPUs and GPUs. We expect that our new benchmark will adapt to take into 
account emerging trends in a similar fashion. 
 
Possible Future Extensions 
 

1. Coarse Grid Solve:  Presently HPCG has a simple additive Schwarz preconditioner.  
Realistic preconditioned iterative solvers would have some kind of coarse grid or 
multilevel solver in order to retain scalability of the solver by keeping iteration counts 
from inflating too quickly.  Furthermore, the presence of a coarse grid puts much more 
strain on latency-impacting elements of the computer system. 
 
Although HPCG includes a sparse implicit solver, it is meant as a representative 
benchmark for a broader class of applications.  The computational and communication 
patterns represented in HPCG cover many types of applications, adding a coarse grid 
solve makes it much more specialized.  Even so, we will monitor the potential value of 
adding a coarse grid solve to a future version of HPCG. 
 

2. Multicoloring and other reorderings for improved ComputeSYMGS performance:  We 
use a natural ordering of equations for each local subdomain symmetric Gauss-Seidel 
sweep.  This natural ordering tends to have a very restricted resource of thread and vector 
parallelism, since parallelism is restricted to wave fronts through the domain.  
Multicoloring orderings can dramatically increase the resource of parallelism, but 
typically do so at the expense of increasing iteration counts. 
 
If users evolved to a single approach to improve ComputeSYMGS performance, we may 
standardize on that ordering. 

 
	
    



 

 15 

10. SUMMARY AND CONCLUSIONS 
 
We	
  believe	
  that	
  the	
  HPCG	
  benchmark	
  is	
  an	
  attractive	
  approach	
  to	
  measuring	
  and	
  ranking	
  
high-­‐performance	
  computing	
  systems	
  because	
  it	
  contains	
  a	
  small	
  collection	
  of	
  the	
  key	
  
computation	
  and	
  communication	
  patterns	
  present	
  in	
  many	
  applications.	
  	
  HPCG	
  is	
  large	
  
enough	
  to	
  be	
  mathematically	
  meaningful,	
  yet	
  small	
  enough	
  to	
  easily	
  understand	
  and	
  use.	
  
	
  
The	
  HPCG	
  reference	
  implementation	
  provides	
  a	
  starting	
  point	
  and	
  framework	
  for	
  
optimizations.	
  	
  Furthermore,	
  it	
  provides	
  mathematical	
  and	
  computational	
  validation	
  and	
  
verification	
  testing.	
  	
  Unlike	
  HPL,	
  HPCG	
  will	
  typically	
  not	
  approach	
  the	
  peak	
  performance	
  as	
  
measured	
  in	
  GFLOP/s	
  of	
  most	
  computer	
  systems.	
  	
  However,	
  it	
  will	
  stress	
  the	
  most	
  
important	
  performance	
  impacting	
  features	
  of	
  a	
  computer	
  system:	
  memory	
  and	
  network	
  
bandwidth	
  and	
  latency,	
  system	
  balance	
  and	
  gather/scatter	
  features.	
  	
  These	
  features	
  have	
  a	
  
much	
  greater	
  impact	
  on	
  general	
  application	
  performance	
  than	
  the	
  compute-­‐rich	
  dense	
  
matrix	
  computations	
  exhibited	
  in	
  HPL.	
  



 

 16 

11. REFERENCES 
	
  
1. Dongarra, J., et al. Top 500 Supercomputer Sites. 1999; Available from: 

http://www.top500.org. 
2. Dongarra, J and Heroux M., Toward a New Metric for Ranking High Performance 

Computing Systems, in Sandia Report 2013, Sandia National Laboratories. 
3.  Dongarra, J., Luszczek, P.,and Petitet, A., The LINPACK Benchmark: Past, Present, and 

Future, Concurrency and Computation: Practice and Experience 15(9):803–820, August 
2003, ISSN 1532-0634. 

 
 
 
 
 
 
  



 

 17 

 
	
    



 

 18 

 
  



 

 19 

DISTRIBUTION 
 
1 MS0899 Technical Library 9536 (electronic copy) 
	
    



 

 20 

  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
  


