

SANDIA REPORT
SAND2013-	 8752
Unlimited Release
Printed October 2013

HPCG Technical Specification

Michael A. Heroux, Sandia National Laboratories1
Jack Dongarra and Piotr Luszczek, University of Tennessee

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 Corresponding Author, maherou@sandia.gov

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2013-	 8752
Unlimited Release
Printed October 2013

HPCG Benchmark Technical Specification

Michael A. Heroux
Scalable Algorithm Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS 1320

Jack Dongarra
Piotr Luszczek

Electrical Engineering and Computer Science Department
1122 Volunteer Blvd University of Tennessee

Knoxville, TN 37996-3450

Abstract

.
The High Performance Conjugate Gradient (HPCG) benchmark [2] is a tool for ranking
computer systems based on a simple additive Schwarz, symmetric Gauss-Seidel preconditioned
conjugate gradient solver. HPCG is similar in its purpose to High Performance Linpack (HPL)
currently used to rank systems as part of the Top 500 benchmark [1], but HPCG is intended to
better represent how today’s applications perform.

In this paper we describe the technical details of HPCG: how it is designed and implemented,
what code transformations are permitted and how to interpret and report results.

 4

ACKNOWLEDGMENTS

The authors thank the Department of Energy National Nuclear Security Agency for funding
provided for this work. We also thank Simon Hammond, Mahesh Rajan, Doug Doerfler and
Christian Trott for their efforts to test early versions of HPCG and give valuable feedback.

 5

CONTENTS

1.	 Introduction .. 7	
2.	 HPCG Model Problem Description ... 7	
3.	 HPCG Design .. 9	
4.	 HPCG Implementation ... 12	
5.	 HPCG Testing .. 12	
6.	 Permitted Transformations and Optimizations .. 12	
7.	 How To Report HPCG Benchmark Results ... 12	
8.	 FAQs .. 13	
9.	 Related Work and Future Adaptations ... 14	
10.	 Summary and Conclusions .. 15	
11.	 References .. 16	
Distribution ... 19	
	 	

 6

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

This	 page	 is	 intentionally	 left	 blank.

	

 7

1. INTRODUCTION

The High Performance Conjugate Gradient (HPCG) benchmark is a simple program that
generates a synthetic sparse linear system that is mathematically similar to a finite element, finite
volume or finite difference discretizations of a three-dimensional heat diffusion problem on a
semi-regular grid. The problem is solved using domain decomposition with an additive Schwarz
preconditioned conjugate gradient method where each subdomain is preconditioned using a
symmetric Gauss-Seidel sweep. This document provides a technical description of the
benchmark and is a companion to Toward a New Metric for Ranking High Performance
Computing Systems [2].

2. HPCG MODEL PROBLEM DESCRIPTION

The HPCG benchmark generates a synthetic discretized three-dimensional partial differential
equation model problem, and computes preconditioned conjugate gradient iterations for the
resulting sparse linear system. The model problem can be interpreted as a single degree of
freedom heat diffusion model with zero Dirichlet boundary conditions. The global domain
dimensions are (nx *npx)× (ny *npy)× (nxz *npz)where (nx × ny × nz) are the local subgrid
dimensions in the x, y, and z dimensions, respectively, assigned to each MPI process. These
values are read from the data file hpcg.dat, or are passed in as command line arguments. The
dimensions (npx × npy × npz) , are a factoring of the MPI process space that is computed
automatically in the HPCG setup phase. We impose ratio restrictions on both the local and
global x, y and z dimensions, which are enforced in the setup phase of HPCG.

The setup phase constructs a logically global, physically distributed sparse linear system using a
27-point stencil at each grid point in the 3D domain such that the equation at point (i, j, k)
depends the values at its location and its 26 surrounding neighbors. The matrix is constructed to
be weakly diagonally dominant for interior points of the global domain, and strongly diagonally
dominant for boundary points, reflecting a synthetic conservation principle for the interior points
and the impact of zero Dirichlet boundary values on the boundary equations. The resulting
sparse linear system has the following properties:

- A sparse matrix with 27 nonzero entries per row for interior
equations and 7 to 18 nonzero terms for boundary equations.

- A symmetric, positive definite, nonsingular linear operator.
- A generated known exact solution vector with all values

equal to 1.0.
- A matching right-hand-side vector.
- An initial guess of all zeros.

The central purpose of defining this sparse linear system is to
provide a rich vehicle for executing a collection of important
computational kernels embodied in the preconditioned conjugate gradient method shown in
Figure 1. However, the benchmark is not about computing a high fidelity solution to this
problem. In fact iteration counts are fixed in the benchmark code and we do not expect

 8

convergence to the solution, regardless of problem size. We do use the spectral properties of
both the problem and the preconditioned conjugate gradient algorithm as part of software testing.
See Section 5 for details.

Example of parameter settings: Suppose that we have compiled HPCG with the default MPI
and OpenMP modes enabled. Then, assuming a bash Linux terminal window, the following
commands from the build/bin directory:
 export OMP_NUM_THREADS=1
 mpiexec –n 96 ./xhpcg 70 80 90
will result in:

• nx = 70, ny = 80, nz = 90
• npx = 4, npy = 4, npz = 6
• Global domain dimensions: 280-by-320-by-540
• Number of equations per MPI process: 504,000
• Global number of equations: 48,384,000
• Global number of nonzeros: 1,298,936,872

Note that changing the value of OMP_NUM_THREADS does not change the problem size or
dimensions. It only changes how many threads are active within each MPI process.

	
CG ALGORITHM

• p0 := x0, r0 := b-Ap0
• Loop i = 1, 2, …

ozi := M-1ri-1
oif i = 1

§ pi := zi
§ αi := dot_product(ri-1, z)

oelse
§ αi := dot_product(ri-1, z)
§ βi := αi/αi-1
§ pi := βi*pi-1+zi

oend if
oαi := dot_product(ri-1, zi) /dot_product(pi, A*pi)
oxi+1 := xi + αi*pi
ori := ri-1 – αi*A*pi
oif ||ri||2 < tolerance then Stop

• end Loop
	
	
	

Figure 1: Basic Preconditioned Conjugate Gradient Algorithm

 9

3. HPCG DESIGN

HPCG has a single main program hpcg/testing/main.cpp. The flow of execution is shown in
Figure 2.

The HPCG code executes the following:

1. Problem setup:
a. Call GenerateGeometry to construct the geometry based on the input parameters

for the local subdomain size and number of MPI processes as described in Section
2.

b. Call GenerateProblem to generate a synthetic symmetric positive definite (SPD)
matrix A using an array-of-pointers-style compressed sparse row format, an exact

Figure 2: HPCG Execution Phases.

 10

solution vector of all 1.0 values, a corresponding right-hand-side vector b, and
initial guess for x of all 0.0 values.

c. Call SetupHalo to setup the halo region needed for efficient exchange of off-
processor elements prior to computing the sparse matrix-vector product (called in
ComputeSpMV).

d. Call InitializeSparseCGData to set up data structures for sparse matrix
multiplication and the local symmetric Gauss-Seidel preconditioner.

e. Call OptimizeProblem to execute user-defined optimizations.
i. Permitted optimizations are limited to:

1. Changes in sparse matrix data structures that enable better memory
access patterns. Such changes expressly do not permit elimination
of indirect addressing of the input vector for either the
ComputeSPMV or ComputeSYMGS kernels or simplified
floating point representations of data elements.

2. Permutations of the linear system to improve data parallelism.
ii. Prohibited optimizations:

1. Any other modifications must first be proposed to the HPCG
development team. Generally speaking, optimizations that
circumvent the intention of the benchmark as a driver for
common computational kernels are not permitted.

2. Although the matrix pattern may be regular, or nearly so, and
value-symmetric, matrix storage is to be treated as unstructured
and all matrix values are to be retained and used to full precision.
The benchmarker is prohibited from exploiting regularity by using,
for example, a sparse diagonal format and is prohibited from
exploiting value symmetry to reduce storage requirements.

iii. The time taken for this phase (any optimization in data structure
performed) is counted in the final performance measurement. The cost if
this phase is added to the cost of executing a single CG iteration set
(which is the equivalent residual drop of 50 iterations of the reference CG
implementation).

2. Verification and validation testing: In order to assure correct implementation and
execution of the optimized version of HPCG, we use the properties of conjugate gradients
and the symmetry of the linear operator and preconditioner as validation tests.

a. Spectral tests (CGtest):
i. In this test, we modify the matrix diagonal temporarily such that the first

nine diagonals are defined numerically to be (2 x106, 3 x106, 4 x106, …,
10 x106). All remaining diagonal values are set to 1 x106. The off-
diagonal values are unmodified but are so small that the matrix looks
spectrally like a diagonal matrix with 10 distinct diagonal values and
therefore 10 distinct eigenvalues.

ii. By construction, regardless of problem size, the unpreconditioned
conjugate gradient algorithm should converge in 11 or 12 iterations.

iii. Similarly, preconditioned CG using symmetric Gauss-Seidel should
converge in one iteration, since the preconditioner has the effect of scaling
the diagonal terms to be of the same magnitude.

 11

b. Symmetry tests (Symtest):
i. In this test we confirm the symmetry of the matrix and preconditioner

functions by computing two scalar products that are mathematically
identical for symmetric operators.

ii. Using two pseudo-random vectors x and y, and the user implementations
of ComputeSPMV to apply the matrix A and ComputeSYMGS to apply
the preconditioner M we compute two scalar values:

1. Departure from symmetry for SPMV: (xTAy − yTAx) .
2. Departure from symmetry for SYMGS: (xTM −1y − yTM −1x) .

c. SPMV testing: Using the exact solution vector, we compare the result generated
by ComputeSPMV with the known RHS vector.

3. Reference Sparse MV and Gauss-Seidel timing: We run the reference kernels for use
in our output report.

4. Reference CG timing and residual reduction: We will report the reference CG timing
results in the output. We run the reference CG solver for a fixed number of iterations
(50) and record the reduction in the residual. The optimized CG solver must also achieve
the same residual reduction even if it requires more iterations.

5. Optimized CG Setup: We run the optimized CG solver until it reaches the same residual
reduction as the reference CG solver.

a. The time required to execute this run and the number of iterations required to
achieve the residual drop are both recorded.

b. Using the execution time of a single call to the optimized CG solver (a single set),
we compute how many sets of runs are required.

c. The number of iterations required to achieve the required residual drop is called
numberOfOptCgIters. If the optimized CG does not differ from the reference
CG convergence behavior, this value will be 50.

d. The number of CG sets required to fill the benchmark time requirement is called
numberOfCgSets.

6. Optimized CG timing and analysis (Benchmark phase): We now finally run the
benchmark phase of HPCG. Here we run the optimized CG solver numberOfCgSets
times, and each time run the solver for numberOfOptCgIters iterations.

a. The residual value of each set is recorded as a unique value. At the end of the
benchmark phase we compute, analyze and report the mean value of all recorded
residuals and the variance.

b. Small perturbations of the residual are permitted. These can occur because of
variations in the order of floating point computations. For example, OpenMP
execution of a dot-product typically changes the order of summation and leads to
minor (round-off error) perturbations in the final dot-product result.

7. Post-processing and reporting: We will report a single timing result, and other metrics.
a. Computational verification and validation metrics are reported.
b. Timing and execution rate results are reported.
c. Pass/fail information is reported, as is an email address where results can be

submitted.

	

 12

4. HPCG REFERENCE IMPLEMENTATION
	

The reference HPCG code is implemented in C++ using MPI and OpenMP and	 makes	 some	
use	 of	 the	 C++	 standard	 libraries	 and	 container	 classes.	 	 While	 it	 is	 certainly	 possible	 to	
write	 the	 same	 functionality	 in	 C,	 many	 applications	 rely	 on	 high-‐level	 C++	 features	 for	
improved	 developer	 productivity.	 	 We	 want	 HPCG	 to	 reflect	 the	 language	 needs	 of	 users	 as	
part	 of	 this	 benchmark.	
	
Even	 though	 standard	 libraries	 and	 containers	 are	 used	 in	 HPCG,	 all	 computations	 in	 the	
benchmark	 phase	 are	 performed	 using	 simple	 for-‐loops	 and	 arrays,	 which	 are	 easily	
converted	 to	 C	 or	 Fortran	 equivalents.	
	
	

5. HPCG TESTING
	
HPCG	 uses	 basic	 spectral	 properties	 of	 the	 conjugate	 gradient	 algorithm	 in	 order	 to	 confirm	
that	 the	 implementation	 used	 in	 the	 benchmark	 has	 expected	 behavior.	 	 In	 particular,	 for	 a	
matrix	 with	 k	 distinct	 eigenvalues,	 CG	 should	 take	 k	 iteration	 to	 reach	 convergence,	 in	 exact	
arithmetic.	 	 We	 temporarily	 	 make	 one	 run	 where	 we	 have	 a	 modify	 the	 diagonal	 of	 our	
matrix	 so	 that	 there	 are	 only	 10	 distinct	 values	 (2 x106,	 3 x106,	 4 x106,	 5 x106,	 6 x106,	 7 x106,	
8 x106,	 9 x106,	 10 x106).	 	 The	 remaining	 diagonal	 values	 are	 set	 to	 1	 x	 106.	 	 Although	 the	 off-‐
diagonal	 values	 remain	 nonzero	 and	 unchanged,	 they	 are	 of	 magnitude	 1.0	 and	 have	 little	
influence	 on	 the	 spectral	 behavior	 of	 the	 linear	 operator.	 	 After	 performing	 the	 spectral	
tests,	 we	 restore	 the	 original	 matrix	 diagonal	 values.	
	
For	 unpreconditioned	 CG	 (which	 is	 selected	 by	 a	 bool	 argument	 to	 CG),	 we	 should	 expect	 a	
bit	 more	 than	 10	 iterations	 to	 converge.	 	 The	 symmetric	 Gauss-‐Seidel	 	 preconditioned	 CG	
should	 converge	 in	 about	 1	 iteration,	 since	 this	 preconditioner	 behaves	 like	 Jacobi	 scaling	
(only	 the	 large	 diagonal	 values	 really	 matter)	 and	 the	 scaling	 makes	 all	 diagonals	 appear	 to	
be	 1.0,	 so	 CG	 should	 require	 about	 1	 iteration.	
	

6. PERMITTED TRANSFORMATIONS AND OPTIMIZATIONS
	
What	 can	 and	 cannot	 be	 changed:	

• User	 is	 not	 allowed	 to	 change	 the	 basic	 CG	 algorithm	 or	 preconditioner	 algorithm.	
• User	 can	 change	 coding	 for	 the	 preconditioner	 but	 must	 use	 the	 same	

mathematical	 preconditioner.	
• User	 is	 allowed	 to	 change	 the	 coding	 for	 ComputeDOT,	 ComputeWAXPBY,	

ComputeSPMV	 and	 ComputeSYMGS.	
• User	 is	 not	 allowed	 to	 change	 the	 matrix	 data	 (numerical	 entries).	
• User	 can	 change	 the	 storage	 format,	 but	 the	 time	 to	 change	 is	 recorded	 and	 used	

in	 the	 computations	 of	 the	 performance	 rate.	
	

7. HOW TO REPORT HPCG BENCHMARK RESULTS
	

 13

All	 results	 are	 recorded	 in	 the	 HPCG-‐Benchmark-‐<identifier>.yaml	 file.	 	 Instructions	
for	 reporting	 these	 results	 are	 at	 the	 end	 of	 this	 file.	 	 YAML	 is	 a	 human-‐readable	 format	
that	 is	 also	 convertible	 to	 XML	 and	 other	 hierarchical	 formats,	 making	 it	 easier	 to	
manage	 output	 as	 database	 records.	
	
The	 Output	 Results:	 See	 generated	 results	 after	 running	 the	 benchmark.	

	
8. FAQS

	
Most	 of	 the	 information	 in	 this	 section	 can	 be	 found	 in	 other	 parts	 of	 this	 document,	 but	 we	
repeat	 it	 here	 for	 convenience.	
	

1. The	 sparsity	 pattern	 of	 the	 synthetic	 matrix	 is	 really	 a	 regular	 27-‐point	 3-‐
dimensional	 stencil	 pattern.	 	 Can	 I	 take	 advantage	 of	 this	 and	 eliminate	 the	
indirect	 access	 in	 the	 ComputeSPMV	 and	 ComputeSYMGS	 kernels?	
	
No.	 	 In	 order	 to	 make	 the	 HPCG	 benchmark	 simple	 to	 design,	 implement	 and	
understand,	 we	 have	 used	 a	 simple	 synthetic	 problem	 generator.	 	 However,	 you	 may	
not	 explicitly	 take	 advantage	 of	 this	 latent	 structure.	 	 Specifically,	 you	 must	 access	
vector	 data	 indirectly	 in	 the	 ComputeSPMV	 and	 ComputeSYMGS	 kernels.	 	 You	 must	
also	 use	 standard	 double	 precision	 arithmetic	 for	 every	 phase	 of	 the	 computation.	
	

2. The	 matrix	 in	 this	 problem	 is	 symmetric.	 	 Can	 I	 take	 advantage	 of	 symmetry	 to	
reduce	 storage	 and	 data	 access	 costs?	
	
No.	 	 Although	 the	 problem	 is	 symmetric,	 all	 computational	 kernels	 must	 use	 the	
matrix	 as	 though	 it	 were	 non-‐symmetric.	
	

3. A	 mathematically	 equivalent	 operator	 that	 uses	 much	 less	 storage	 easily	
represents	 the	 linear	 operator	 associated	 with	 this	 matrix.	 	 Can	 I	 substitute	
the	 ComputeSPMV	 and	 ComputeSYMGS	 kernels	 with	 mathematically	
equivalent	 operators?	
	
No.	 	 The	 only	 permitted	 optimizations	 for	 ComputeSPMV	 and	 ComputeSYMGS	 are	
permutations	 that	 expose	 greater	 potential	 for	 concurrent	 execution	 of	 the	 required	
arithmetic	 for	 these	 kernels.	 	 You	 may	 also	 introduce	 nonzero	 entries	 (that	 have	
zero	 values)	 in	 order	 to	 increase	 the	 efficiency	 of	 using	 the	 sparsity	 pattern.	 	
However,	 you	 may	 not	 in	 any	 way	 eliminate	 terms	 in	 the	 matrix.	
	

4. I	 have	 permuted	 the	 matrix	 structure	 so	 that	 the	 ComputeSYMGS	 kernel	 runs	
faster	 (better	 vectorization	 and	 more	 thread	 parallelism).	 	 However,	 I	 am	 now	
performing	 more	 iterations	 in	 order	 to	 reach	 the	 residual	 drop	 prescribed	 by	
the	 reference	 CG	 solver.	 	 Can	 I	 count	 the	 extra	 operations	 as	 part	 of	 my	 total	
operation	 count	 when	 computing	 the	 final	 GFLOP/s	 rating?	

 14

No.	 	 The	 loss	 of	 convergence	 rate	 due	 to	 the	 transformation	 reflects	 the	 trade-‐off	
between	 parallelism	 and	 robustness	 and	 is	 considered	 part	 of	 the	 overhead	 cost.	

5. The	 analysis	 I	 perform	 in	 OptimizeProblem	 is	 fairly	 expensive.	 	 Must	 it	 be	
counted	 as	 part	 of	 the	 total	 execution	 time	 in	 my	 GFLOP/s	 rating?	
	
Yes.	 	 However,	 this	 setup	 cost	 is	 added	 to	 the	 total	 cost	 of	 running	 one	 set	 of	
optimized	 CG	 iterations,	 so	 the	 setup	 cost	 is	 amortized.	
	
	

9. RELATED WORK AND FUTURE ADAPTATIONS

Evolution of HPCG Benchmark

Regardless of which specific benchmark we propose, we expect it to evolve. HPL[3] started as a
simple 100-by-100 dense factorization, then a 1000-by-1000, and now places no restrictions on
problem size. Furthermore, the algorithms used to compute the factorization have changed
dramatically; modified to take advantage of distributed memory, changes in network architecture
and multicore CPUs and GPUs. We expect that our new benchmark will adapt to take into
account emerging trends in a similar fashion.

Possible Future Extensions

1. Coarse Grid Solve: Presently HPCG has a simple additive Schwarz preconditioner.
Realistic preconditioned iterative solvers would have some kind of coarse grid or
multilevel solver in order to retain scalability of the solver by keeping iteration counts
from inflating too quickly. Furthermore, the presence of a coarse grid puts much more
strain on latency-impacting elements of the computer system.

Although HPCG includes a sparse implicit solver, it is meant as a representative
benchmark for a broader class of applications. The computational and communication
patterns represented in HPCG cover many types of applications, adding a coarse grid
solve makes it much more specialized. Even so, we will monitor the potential value of
adding a coarse grid solve to a future version of HPCG.

2. Multicoloring and other reorderings for improved ComputeSYMGS performance: We
use a natural ordering of equations for each local subdomain symmetric Gauss-Seidel
sweep. This natural ordering tends to have a very restricted resource of thread and vector
parallelism, since parallelism is restricted to wave fronts through the domain.
Multicoloring orderings can dramatically increase the resource of parallelism, but
typically do so at the expense of increasing iteration counts.

If users evolved to a single approach to improve ComputeSYMGS performance, we may
standardize on that ordering.

	

 15

10. SUMMARY AND CONCLUSIONS

We	 believe	 that	 the	 HPCG	 benchmark	 is	 an	 attractive	 approach	 to	 measuring	 and	 ranking	
high-‐performance	 computing	 systems	 because	 it	 contains	 a	 small	 collection	 of	 the	 key	
computation	 and	 communication	 patterns	 present	 in	 many	 applications.	 	 HPCG	 is	 large	
enough	 to	 be	 mathematically	 meaningful,	 yet	 small	 enough	 to	 easily	 understand	 and	 use.	
	
The	 HPCG	 reference	 implementation	 provides	 a	 starting	 point	 and	 framework	 for	
optimizations.	 	 Furthermore,	 it	 provides	 mathematical	 and	 computational	 validation	 and	
verification	 testing.	 	 Unlike	 HPL,	 HPCG	 will	 typically	 not	 approach	 the	 peak	 performance	 as	
measured	 in	 GFLOP/s	 of	 most	 computer	 systems.	 	 However,	 it	 will	 stress	 the	 most	
important	 performance	 impacting	 features	 of	 a	 computer	 system:	 memory	 and	 network	
bandwidth	 and	 latency,	 system	 balance	 and	 gather/scatter	 features.	 	 These	 features	 have	 a	
much	 greater	 impact	 on	 general	 application	 performance	 than	 the	 compute-‐rich	 dense	
matrix	 computations	 exhibited	 in	 HPL.	

 16

11. REFERENCES
	
1. Dongarra, J., et al. Top 500 Supercomputer Sites. 1999; Available from:

http://www.top500.org.
2. Dongarra, J and Heroux M., Toward a New Metric for Ranking High Performance

Computing Systems, in Sandia Report 2013, Sandia National Laboratories.
3. Dongarra, J., Luszczek, P.,and Petitet, A., The LINPACK Benchmark: Past, Present, and

Future, Concurrency and Computation: Practice and Experience 15(9):803–820, August
2003, ISSN 1532-0634.

 17

	

 18

 19

DISTRIBUTION

1 MS0899 Technical Library 9536 (electronic copy)
	

 20

	

