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Abstract 
 

.  
The High Performance Conjugate Gradient (HPCG) benchmark [2] is a tool for ranking 
computer systems based on a simple additive Schwarz, symmetric Gauss-Seidel preconditioned 
conjugate gradient solver.  HPCG is similar in its purpose to High Performance Linpack (HPL) 
currently used to rank systems as part of the Top 500 benchmark [1], but HPCG is intended to 
better represent how today’s applications perform.   
 
In this paper we describe the technical details of HPCG:  how it is designed and implemented, 
what code transformations are permitted and how to interpret and report results. 
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1. INTRODUCTION 
 
The High Performance Conjugate Gradient (HPCG) benchmark is a simple program that 
generates a synthetic sparse linear system that is mathematically similar to a finite element, finite 
volume or finite difference discretizations of a three-dimensional heat diffusion problem on a 
semi-regular grid.  The problem is solved using domain decomposition with an additive Schwarz 
preconditioned conjugate gradient method where each subdomain is preconditioned using a 
symmetric Gauss-Seidel sweep.  This document provides a technical description of the 
benchmark and is a companion to Toward a New Metric for Ranking High Performance 
Computing Systems [2]. 
 
 

2. HPCG MODEL PROBLEM DESCRIPTION 
 
The HPCG benchmark generates a synthetic discretized three-dimensional partial differential 
equation model problem, and computes preconditioned conjugate gradient iterations for the 
resulting sparse linear system.  The model problem can be interpreted as a single degree of 
freedom heat diffusion model with zero Dirichlet boundary conditions.  The global domain 
dimensions are (nx *npx )× (ny *npy )× (nxz *npz )where (nx × ny × nz )  are the local subgrid 
dimensions in the x, y, and z dimensions, respectively, assigned to each MPI process.  These 
values are read from the data file hpcg.dat, or are passed in as command line arguments.  The 
dimensions (npx × npy × npz ) , are a factoring of the MPI process space that is computed 
automatically in the HPCG setup phase.   We impose ratio restrictions on both the local and 
global x, y and z dimensions, which are enforced in the setup phase of HPCG. 
 
The setup phase constructs a logically global, physically distributed sparse linear system using a 
27-point stencil at each grid point in the 3D domain such that the equation at point (i, j, k) 
depends the values at its location and its 26 surrounding neighbors.  The matrix is constructed to 
be weakly diagonally dominant for interior points of the global domain, and strongly diagonally 
dominant for boundary points, reflecting a synthetic conservation principle for the interior points 
and the impact of zero Dirichlet boundary values on the boundary equations.  The resulting 
sparse linear system has the following properties:  

- A sparse matrix with 27 nonzero entries per row for interior 
equations and 7 to 18 nonzero terms for boundary equations. 

- A symmetric, positive definite, nonsingular linear operator. 
- A generated known exact solution vector with all values 

equal to 1.0. 
- A matching right-hand-side vector. 
- An initial guess of all zeros. 

 
The central purpose of defining this sparse linear system is to 
provide a rich vehicle for executing a collection of important 
computational kernels embodied in the preconditioned conjugate gradient method shown in 
Figure 1.  However, the benchmark is not about computing a high fidelity solution to this 
problem.  In fact iteration counts are fixed in the benchmark code and we do not expect 
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convergence to the solution, regardless of problem size.  We do use the spectral properties of 
both the problem and the preconditioned conjugate gradient algorithm as part of software testing.  
See Section 5 for details. 
 
Example of parameter settings: Suppose that we have compiled HPCG with the default MPI 
and OpenMP modes enabled.  Then, assuming a bash Linux terminal window, the following 
commands from the build/bin directory: 
 export OMP_NUM_THREADS=1 
 mpiexec –n 96 ./xhpcg 70 80 90 
will result in: 

• nx = 70,  ny = 80,  nz = 90  
• npx = 4,  npy = 4,  npz = 6  
• Global domain dimensions: 280-by-320-by-540 
• Number of equations per MPI process: 504,000 
• Global number of equations:     48,384,000 
• Global number of nonzeros: 1,298,936,872 

 
Note that changing the value of OMP_NUM_THREADS does not change the problem size or 
dimensions.  It only changes how many threads are active within each MPI process. 

	    
CG ALGORITHM 

• p0 := x0, r0 := b-Ap0 
• Loop i = 1, 2, … 

ozi := M-1ri-1 
oif i = 1 

§ pi := zi 
§ αi := dot_product(ri-1, z) 

oelse 
§ αi := dot_product(ri-1, z) 
§ βi := αi/αi-1 
§ pi := βi*pi-1+zi 

oend if 
oαi := dot_product(ri-1, zi) /dot_product(pi, A*pi) 
oxi+1 := xi + αi*pi 
ori := ri-1 – αi*A*pi 
oif ||ri||2 < tolerance then Stop 

• end Loop 
	  
	  
	  

Figure 1: Basic Preconditioned Conjugate Gradient Algorithm 
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3. HPCG DESIGN 
 
HPCG has a single main program hpcg/testing/main.cpp.  The flow of execution is shown in 
Figure 2.  

 
The HPCG code executes the following: 
 

1. Problem setup:   
a. Call GenerateGeometry to construct the geometry based on the input parameters 

for the local subdomain size and number of MPI processes as described in Section 
2. 

b. Call GenerateProblem to generate a synthetic symmetric positive definite (SPD) 
matrix A using an array-of-pointers-style compressed sparse row format, an exact 

 
Figure 2: HPCG Execution Phases. 
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solution vector of all 1.0 values, a corresponding right-hand-side vector b, and 
initial guess for x of all 0.0 values.   

c. Call SetupHalo to setup the halo region needed for efficient exchange of off-
processor elements prior to computing the sparse matrix-vector product (called in 
ComputeSpMV).   

d. Call InitializeSparseCGData to set up data structures for sparse matrix 
multiplication and the local symmetric Gauss-Seidel preconditioner.  

e. Call OptimizeProblem to execute user-defined optimizations.   
i. Permitted optimizations are limited to: 

1. Changes in sparse matrix data structures that enable better memory 
access patterns.  Such changes expressly do not permit elimination 
of indirect addressing of the input vector for either the 
ComputeSPMV or ComputeSYMGS kernels or simplified 
floating point representations of data elements. 

2. Permutations of the linear system to improve data parallelism.   
ii. Prohibited optimizations: 

1. Any other modifications must first be proposed to the HPCG 
development team.  Generally speaking, optimizations that 
circumvent the intention of the benchmark as a driver for 
common computational kernels are not permitted.   

2. Although the matrix pattern may be regular, or nearly so, and 
value-symmetric, matrix storage is to be treated as unstructured 
and all matrix values are to be retained and used to full precision.  
The benchmarker is prohibited from exploiting regularity by using, 
for example, a sparse diagonal format and is prohibited from 
exploiting value symmetry to reduce storage requirements. 

iii. The time taken for  this phase (any optimization in data structure 
performed) is counted in the final performance measurement.  The cost if 
this phase is added to the cost of executing a single CG iteration set 
(which is the equivalent residual drop of 50 iterations of the reference CG 
implementation). 

2. Verification and validation testing:  In order to assure correct implementation and 
execution of the optimized version of HPCG, we use the properties of conjugate gradients 
and the symmetry of the linear operator and preconditioner as validation tests. 

a. Spectral tests (CGtest):   
i. In this test, we modify the matrix diagonal temporarily such that the first 

nine diagonals are defined numerically to be (2 x106, 3 x106, 4 x106, …, 
10 x106).  All remaining diagonal values are set to 1 x106.  The off-
diagonal values are unmodified but are so small that the matrix looks 
spectrally like a diagonal matrix with 10 distinct diagonal values and 
therefore 10 distinct eigenvalues.   

ii. By construction, regardless of problem size, the unpreconditioned 
conjugate gradient algorithm should converge in 11 or 12 iterations. 

iii. Similarly, preconditioned CG using symmetric Gauss-Seidel should 
converge in one iteration, since the preconditioner has the effect of scaling 
the diagonal terms to be of the same magnitude. 
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b. Symmetry tests (Symtest): 
i. In this test we confirm the symmetry of the matrix and preconditioner 

functions by computing two scalar products that are mathematically 
identical for symmetric operators. 

ii. Using two pseudo-random vectors x and y, and the user implementations 
of ComputeSPMV to apply the matrix A  and ComputeSYMGS to apply 
the preconditioner M we compute two scalar values: 

1. Departure from symmetry for SPMV: (xTAy − yTAx) . 
2. Departure from symmetry for SYMGS: (xTM −1y − yTM −1x) . 

c. SPMV testing: Using the exact solution vector, we compare the result generated 
by ComputeSPMV with the known RHS vector. 

3. Reference Sparse MV and Gauss-Seidel timing:  We run the reference kernels for use 
in our output report. 

4. Reference CG timing and residual reduction: We will report the reference CG timing 
results in the output.  We run the reference CG solver for a fixed number of iterations 
(50) and record the reduction in the residual.  The optimized CG solver must also achieve 
the same residual reduction even if it requires more iterations.   

5. Optimized CG Setup: We run the optimized CG solver until it reaches the same residual 
reduction as the reference CG solver.  

a. The time required to execute this run and the number of iterations required to 
achieve the residual drop are both recorded. 

b. Using the execution time of a single call to the optimized CG solver (a single set), 
we compute how many sets of runs are required. 

c. The number of iterations required to achieve the required residual drop is called 
numberOfOptCgIters.  If the optimized CG does not differ from the reference 
CG convergence behavior, this value will be 50. 

d. The number of CG sets required to fill the benchmark time requirement is called 
numberOfCgSets. 

6. Optimized CG timing and analysis (Benchmark phase):  We now finally run the 
benchmark phase of HPCG.  Here we run the optimized CG solver numberOfCgSets 
times, and each time run the solver for numberOfOptCgIters iterations. 

a. The residual value of each set is recorded as a unique value.  At the end of the 
benchmark phase we compute, analyze and report the mean value of all recorded 
residuals and the variance.   

b. Small perturbations of the residual are permitted.  These can occur because of 
variations in the order of floating point computations.  For example, OpenMP 
execution of a dot-product typically changes the order of summation and leads to 
minor (round-off error) perturbations in the final dot-product result. 

7. Post-processing and reporting:  We will report a single timing result, and other metrics. 
a. Computational verification and validation metrics are reported.   
b. Timing and execution rate results are reported.  
c. Pass/fail information is reported, as is an email address where results can be 

submitted. 
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4. HPCG REFERENCE IMPLEMENTATION 
	  

The reference HPCG code is implemented in C++ using MPI and OpenMP and	  makes	  some	  
use	  of	  the	  C++	  standard	  libraries	  and	  container	  classes.	  	  While	  it	  is	  certainly	  possible	  to	  
write	  the	  same	  functionality	  in	  C,	  many	  applications	  rely	  on	  high-‐level	  C++	  features	  for	  
improved	  developer	  productivity.	  	  We	  want	  HPCG	  to	  reflect	  the	  language	  needs	  of	  users	  as	  
part	  of	  this	  benchmark.	  
	  
Even	  though	  standard	  libraries	  and	  containers	  are	  used	  in	  HPCG,	  all	  computations	  in	  the	  
benchmark	  phase	  are	  performed	  using	  simple	  for-‐loops	  and	  arrays,	  which	  are	  easily	  
converted	  to	  C	  or	  Fortran	  equivalents.	  
	  
	  

5. HPCG TESTING 
	  
HPCG	  uses	  basic	  spectral	  properties	  of	  the	  conjugate	  gradient	  algorithm	  in	  order	  to	  confirm	  
that	  the	  implementation	  used	  in	  the	  benchmark	  has	  expected	  behavior.	  	  In	  particular,	  for	  a	  
matrix	  with	  k	  distinct	  eigenvalues,	  CG	  should	  take	  k	  iteration	  to	  reach	  convergence,	  in	  exact	  
arithmetic.	  	  We	  temporarily	  	  make	  one	  run	  where	  we	  have	  a	  modify	  the	  diagonal	  of	  our	  
matrix	  so	  that	  there	  are	  only	  10	  distinct	  values	  (2 x106,	  3 x106,	  4 x106,	  5 x106,	  6 x106,	  7 x106,	  
8 x106,	  9 x106,	  10 x106).	  	  The	  remaining	  diagonal	  values	  are	  set	  to	  1	  x	  106.	  	  Although	  the	  off-‐
diagonal	  values	  remain	  nonzero	  and	  unchanged,	  they	  are	  of	  magnitude	  1.0	  and	  have	  little	  
influence	  on	  the	  spectral	  behavior	  of	  the	  linear	  operator.	  	  After	  performing	  the	  spectral	  
tests,	  we	  restore	  the	  original	  matrix	  diagonal	  values.	  
	  
For	  unpreconditioned	  CG	  (which	  is	  selected	  by	  a	  bool	  argument	  to	  CG),	  we	  should	  expect	  a	  
bit	  more	  than	  10	  iterations	  to	  converge.	  	  The	  symmetric	  Gauss-‐Seidel	  	  preconditioned	  CG	  
should	  converge	  in	  about	  1	  iteration,	  since	  this	  preconditioner	  behaves	  like	  Jacobi	  scaling	  
(only	  the	  large	  diagonal	  values	  really	  matter)	  and	  the	  scaling	  makes	  all	  diagonals	  appear	  to	  
be	  1.0,	  so	  CG	  should	  require	  about	  1	  iteration.	  
	  

6. PERMITTED TRANSFORMATIONS AND OPTIMIZATIONS 
	  
What	  can	  and	  cannot	  be	  changed:	  

• User	  is	  not	  allowed	  to	  change	  the	  basic	  CG	  algorithm	  or	  preconditioner	  algorithm.	  
• User	  can	  change	  coding	  for	  the	  preconditioner	  but	  must	  use	  the	  same	  

mathematical	  preconditioner.	  
• User	  is	  allowed	  to	  change	  the	  coding	  for	  ComputeDOT,	  ComputeWAXPBY,	  

ComputeSPMV	  and	  ComputeSYMGS.	  
• User	  is	  not	  allowed	  to	  change	  the	  matrix	  data	  (numerical	  entries).	  
• User	  can	  change	  the	  storage	  format,	  but	  the	  time	  to	  change	  is	  recorded	  and	  used	  

in	  the	  computations	  of	  the	  performance	  rate.	  
	  

7. HOW TO REPORT HPCG BENCHMARK RESULTS 
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All	  results	  are	  recorded	  in	  the	  HPCG-‐Benchmark-‐<identifier>.yaml	  file.	  	  Instructions	  
for	  reporting	  these	  results	  are	  at	  the	  end	  of	  this	  file.	  	  YAML	  is	  a	  human-‐readable	  format	  
that	  is	  also	  convertible	  to	  XML	  and	  other	  hierarchical	  formats,	  making	  it	  easier	  to	  
manage	  output	  as	  database	  records.	  
	  
The	  Output	  Results:	  See	  generated	  results	  after	  running	  the	  benchmark.	  

	  
8. FAQS 

	  
Most	  of	  the	  information	  in	  this	  section	  can	  be	  found	  in	  other	  parts	  of	  this	  document,	  but	  we	  
repeat	  it	  here	  for	  convenience.	  
	  

1. The	  sparsity	  pattern	  of	  the	  synthetic	  matrix	  is	  really	  a	  regular	  27-‐point	  3-‐
dimensional	  stencil	  pattern.	  	  Can	  I	  take	  advantage	  of	  this	  and	  eliminate	  the	  
indirect	  access	  in	  the	  ComputeSPMV	  and	  ComputeSYMGS	  kernels?	  
	  
No.	  	  In	  order	  to	  make	  the	  HPCG	  benchmark	  simple	  to	  design,	  implement	  and	  
understand,	  we	  have	  used	  a	  simple	  synthetic	  problem	  generator.	  	  However,	  you	  may	  
not	  explicitly	  take	  advantage	  of	  this	  latent	  structure.	  	  Specifically,	  you	  must	  access	  
vector	  data	  indirectly	  in	  the	  ComputeSPMV	  and	  ComputeSYMGS	  kernels.	  	  You	  must	  
also	  use	  standard	  double	  precision	  arithmetic	  for	  every	  phase	  of	  the	  computation.	  
	  

2. The	  matrix	  in	  this	  problem	  is	  symmetric.	  	  Can	  I	  take	  advantage	  of	  symmetry	  to	  
reduce	  storage	  and	  data	  access	  costs?	  
	  
No.	  	  Although	  the	  problem	  is	  symmetric,	  all	  computational	  kernels	  must	  use	  the	  
matrix	  as	  though	  it	  were	  non-‐symmetric.	  
	  

3. A	  mathematically	  equivalent	  operator	  that	  uses	  much	  less	  storage	  easily	  
represents	  the	  linear	  operator	  associated	  with	  this	  matrix.	  	  Can	  I	  substitute	  
the	  ComputeSPMV	  and	  ComputeSYMGS	  kernels	  with	  mathematically	  
equivalent	  operators?	  
	  
No.	  	  The	  only	  permitted	  optimizations	  for	  ComputeSPMV	  and	  ComputeSYMGS	  are	  
permutations	  that	  expose	  greater	  potential	  for	  concurrent	  execution	  of	  the	  required	  
arithmetic	  for	  these	  kernels.	  	  You	  may	  also	  introduce	  nonzero	  entries	  (that	  have	  
zero	  values)	  in	  order	  to	  increase	  the	  efficiency	  of	  using	  the	  sparsity	  pattern.	  	  
However,	  you	  may	  not	  in	  any	  way	  eliminate	  terms	  in	  the	  matrix.	  
	  

4. I	  have	  permuted	  the	  matrix	  structure	  so	  that	  the	  ComputeSYMGS	  kernel	  runs	  
faster	  (better	  vectorization	  and	  more	  thread	  parallelism).	  	  However,	  I	  am	  now	  
performing	  more	  iterations	  in	  order	  to	  reach	  the	  residual	  drop	  prescribed	  by	  
the	  reference	  CG	  solver.	  	  Can	  I	  count	  the	  extra	  operations	  as	  part	  of	  my	  total	  
operation	  count	  when	  computing	  the	  final	  GFLOP/s	  rating?	  
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No.	  	  The	  loss	  of	  convergence	  rate	  due	  to	  the	  transformation	  reflects	  the	  trade-‐off	  
between	  parallelism	  and	  robustness	  and	  is	  considered	  part	  of	  the	  overhead	  cost.	  

5. The	  analysis	  I	  perform	  in	  OptimizeProblem	  is	  fairly	  expensive.	  	  Must	  it	  be	  
counted	  as	  part	  of	  the	  total	  execution	  time	  in	  my	  GFLOP/s	  rating?	  
	  
Yes.	  	  However,	  this	  setup	  cost	  is	  added	  to	  the	  total	  cost	  of	  running	  one	  set	  of	  
optimized	  CG	  iterations,	  so	  the	  setup	  cost	  is	  amortized.	  
	  
	  

9. RELATED WORK AND FUTURE ADAPTATIONS 
 
Evolution of HPCG Benchmark 
 
Regardless of which specific benchmark we propose, we expect it to evolve.  HPL[3] started as a 
simple 100-by-100 dense factorization, then a 1000-by-1000, and now places no restrictions on 
problem size.  Furthermore, the algorithms used to compute the factorization have changed 
dramatically; modified to take advantage of distributed memory, changes in network architecture 
and multicore CPUs and GPUs. We expect that our new benchmark will adapt to take into 
account emerging trends in a similar fashion. 
 
Possible Future Extensions 
 

1. Coarse Grid Solve:  Presently HPCG has a simple additive Schwarz preconditioner.  
Realistic preconditioned iterative solvers would have some kind of coarse grid or 
multilevel solver in order to retain scalability of the solver by keeping iteration counts 
from inflating too quickly.  Furthermore, the presence of a coarse grid puts much more 
strain on latency-impacting elements of the computer system. 
 
Although HPCG includes a sparse implicit solver, it is meant as a representative 
benchmark for a broader class of applications.  The computational and communication 
patterns represented in HPCG cover many types of applications, adding a coarse grid 
solve makes it much more specialized.  Even so, we will monitor the potential value of 
adding a coarse grid solve to a future version of HPCG. 
 

2. Multicoloring and other reorderings for improved ComputeSYMGS performance:  We 
use a natural ordering of equations for each local subdomain symmetric Gauss-Seidel 
sweep.  This natural ordering tends to have a very restricted resource of thread and vector 
parallelism, since parallelism is restricted to wave fronts through the domain.  
Multicoloring orderings can dramatically increase the resource of parallelism, but 
typically do so at the expense of increasing iteration counts. 
 
If users evolved to a single approach to improve ComputeSYMGS performance, we may 
standardize on that ordering. 
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10. SUMMARY AND CONCLUSIONS 
 
We	  believe	  that	  the	  HPCG	  benchmark	  is	  an	  attractive	  approach	  to	  measuring	  and	  ranking	  
high-‐performance	  computing	  systems	  because	  it	  contains	  a	  small	  collection	  of	  the	  key	  
computation	  and	  communication	  patterns	  present	  in	  many	  applications.	  	  HPCG	  is	  large	  
enough	  to	  be	  mathematically	  meaningful,	  yet	  small	  enough	  to	  easily	  understand	  and	  use.	  
	  
The	  HPCG	  reference	  implementation	  provides	  a	  starting	  point	  and	  framework	  for	  
optimizations.	  	  Furthermore,	  it	  provides	  mathematical	  and	  computational	  validation	  and	  
verification	  testing.	  	  Unlike	  HPL,	  HPCG	  will	  typically	  not	  approach	  the	  peak	  performance	  as	  
measured	  in	  GFLOP/s	  of	  most	  computer	  systems.	  	  However,	  it	  will	  stress	  the	  most	  
important	  performance	  impacting	  features	  of	  a	  computer	  system:	  memory	  and	  network	  
bandwidth	  and	  latency,	  system	  balance	  and	  gather/scatter	  features.	  	  These	  features	  have	  a	  
much	  greater	  impact	  on	  general	  application	  performance	  than	  the	  compute-‐rich	  dense	  
matrix	  computations	  exhibited	  in	  HPL.	  
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