
1

CONTENTS

I Abstract 2

II Introduction 2

III Technical 3

IV Frames 3

V Interface 4

VI Representation 5

VII Inference 5

VIII Advantages and Limitations 6

IX Conclusion 6

X Reflection 6

References 7

Appendix 8

2

Framing the Picture
Wenchy Dutreuil

I. ABSTRACT

Frames are an expressive and adaptable form of knowledge
representation that can be used for automatic reasoning. This
paper begins by describing what knowledge representation
and reasoning is. There are numerous methods for knowledge
representation and reasoning. One such method is a Frame,
and these methods are not mutually exclusive. The paper then
proceeds to explain that a Frame is a data structure used in
knowledge representation and reasoning; so, in some cases
logical inference can be combined with frames. Frames are
commonly used in knowledge-based expert systems; so, the
paper continues by exploring a case study on the use of frames
in a simplified expert system. Currently expert systems are
used for decision support, but their power and accuracy has
led me to believe that they will begin to play a primary role
in decision making.

II. INTRODUCTION

Artificial intelligence is a field of study that is concerned
with developing intelligent agents. Agents in this context are
computer systems that are able to perceive, through sensors,
and act on their environments, through actuators 1. The
environments the agents exist in can have different properties.
Some common property descriptors are:

1) Static or dynamic
2) Fully or partially observable
3) Stochastic or deterministic
4) Discrete or continuous
5) Episodic or sequential
6) Known or unknown

Static means that the state of the environment does not change,
while dynamic means that it does. Fully observable means that
the agent can perceive all parts of the environment at once,
while partially means just part of the system is observable
at a time. Deterministic means that actions have a known
and guaranteed outcome, while stochastic means that actions
in the environment have a set of potential outcomes each
with a corresponding probability of success. Episodic means
that a previous action does not affect a future action, while
sequential means previous actions do affect future actions.
Finally known describes whether the designer or agent knows
about the environment before it is placed in it, while unknown
means it does not. Depending on the characteristics the design
of the agent will change.

Fig. 1. Model of a typical formulation for intelligent agents in an environment.
The environment can have one or more agents, and several properties.

Knowledge representation and reasoning (KRR) is a sub-
field of AI dedicated to representing information about the
world in a form that a computer system can use to solve
complex tasks. These agents are typically best suited for static
fully observable deterministic discrete episodic known envi-
ronments, but are used in other environments. This is because
their optimal environment is not typical of the ’real’ world.
The real world is dynamic, partially observable, stochastic,
continuous, sequential, and (partially) known/unknown. The
world is complex; so, this usually results in the addition of
constraints on the model of the world that the agent interacts
with.

The agents built primarily around this paradigm are often
referred to as knowledge-based agents. The central component
of a knowledge-based agent is its knowledge base, or KB [9].
A knowledge base is a set of sentences; each sentence is ex-
pressed in a knowledge representation language and represents
some assertion about the world [9]. Deriving information
that is implied by the information that is already present
is a form of reasoning [3]. Decision procedures constitute
another component of reasoning [4]. A challenge to work
in KRR is its complexity; a “minimal” common-sense system
must “know” something about cause-and-effect, time, purpose,
locality, process, and types of knowledge. It also needs ways
to acquire, represent, and use such knowledge [6].

Knowledge can be categorized in many ways. Two char-
acterizations that will be significant to us are declara-
tive/descriptive and procedural knowledge [3]. These types of
knowledge can be encoded in many different forms, such as:
frame networks, declarative languages (logics), imperative lan-
guages (Java, Python, etc.), semantic networks, product rules,

3

neural networks, genetic algorithms, etc. [3]. Each knowledge
representation format has its advantages and disadvantages.

One of the more common methods of knowledge repre-
sentation is logic. Logic was the dominant paradigm in AI
before the 1990s, but it had some drawbacks due to it being
deterministic and rule based [10]. Despite these drawbacks
it is very expressive and compact [10]. There are several
different types of logics, such as: propositional, first-order,
second-order, modal, fuzzy etc. [1]. We shall only concern
ourselves with propositional and first-order logic. The goals of
logical languages are to represent and reason about knowledge
in the real world [10], there is a direct relation between the
goals of KRR and logical languages.

In propositional logic there are propositional symbols and
logical connectives (not, and, or, implication, bidirectional
implication) [10]. A logical formula compactly represents a
set of models where that formula is true [10]; for example, if
we have propositional symbols P and Q, then P V Q represents
all the worlds where P is true, or Q is true. In the logical
paradigm, each sentence in a KB can be thought of as a
logical formula that describes a set of models. For logical
inferencing using propositional logic our agent can use either
modus ponens or resolution [10]. Modus Ponens is sound
and complete for propositional logic with horn clauses, and
resolution is complete for propositional logic in general.

Unfortunately, resolution has exponential time complexity
while Modus Ponens is linear [10]. But unfortunately, propo-
sitional logic is limited in its expressiveness; as a result,
first-order logic adds variables, functions, and quantification.
First-order logic has two types of quantifiers, universal and
existential. The universal quantifier argues that every member
of a group meets a condition, and the existential quantifier
argues at least one member of a group meets a condition. If we
also impose the restriction that there is a one-to-one mapping
from object to constant symbol in first-order logic, then the
consequence is this idea of propositionalization where first-
order logic is just syntactic sugar for propositional logic and
as a result we can use any inference algorithm for propositional
logic on first-order logic [10].

Logic as a form of knowledge representation may seem
very attractive. But, in relation to these systems, some peo-
ple believe in simple cases one can get such systems to
”perform,” but as we approach reality the obstacles become
overwhelming. The problem of finding suitable axioms–the
problem of ”stating the facts” in terms of always-correct,
logical, assumptions is much harder than is generally believed
[6].

Another formalism for representing knowledge is referred
to as a frame. A frame is a data-structure for representing
a stereotyped situation, like being in a certain kind of living
room, or going to a child’s birthday party [6]. We can think of
a frame as a network of nodes and relations [7]. Collections
of related frames are linked together into frame-systems. The
effects of important actions are mirrored by transformations
between the frames of a system [6]. The ”top levels” of
a frame are fixed and represent things that are always true
about the supposed situation. The lower levels have many
terminals–”slots” that must be filled by specific instances or

data. Each terminal can specify conditions its assignments
must meet. (The assignments themselves are usually smaller
”sub-frames.”) Simple conditions are specified by markers that
might require a terminal assignment to be a person, an object
of sufficient value, or a pointer to a sub-frame of a certain type.
More complex conditions can specify relations among the
things assigned to several terminals [2, 7]. A frame’s terminals
are normally already filled with ”default” assignments [6].

The frame system supports the so-called closed world
inferring paradigm, where all facts that are presented in the
system are true. If some fact is not presented, that means that
it is untrue. It allows avoiding errors in inferring mechanisms
related to the knowledge representation format [7]. Other
formats as, for example, ontology, may support the open-world
paradigm, where all facts that are not presented may also be
true [7].

A frame-based knowledge base is one of the typical models
or a part of such models for knowledge representation in
expert and decision- making systems [7]. For example, in
[5] the authors developed a question answering (QA) system
using a textual KB constructed from a biology textbook, and
in [4] the authors developed an emergency management
system using a KB constructed from domain expertise. In
general, the design of a knowledge model is based on a
sequence of refinement steps, starting from a general valid
reasoning method capable of meeting the goals of the target
application [4]. Some applications of frame-based systems are
emergency systems, machine translation, biomedicine, health
care, probabilistic dialog systems, banking expert systems,
natural language processing, question answering, information
extraction/retrieval, classification, machine learning, robotics
[7].

Despite the apparent separateness of the two discussed
forms of KRR, logic and frames, they are not mutually
exclusive. It is often the case that frame systems have their
semantics defined as an extension to first-order logic. In
addition, restricted and ad hoc forms of logical reasoning can
be employed to derive new information. This coalescing of
ideas helps to improve both systems.

III. TECHNICAL

IV. FRAMES

A method of knowledge representation in AI is known as
a Frame or Frame Networks. Agents built using frames are
referred to as knowledge-based agents or expert systems [9].
A typical design for knowledge based expert systems can be
seen in figure 2. The central component of a knowledge-based
agent is its knowledge base (KB) [9]. A knowledge base is a
set of sentences; each sentence is expressed in a knowledge
representation language and represents some assertion about
the world [9]. As a result the main interface for knowledge-
based agents are ASK, to add information to the KB, and
TELL, to retrieve information from the KB [9]. In the case
of frame based KBs the sentences are stored as frames. In a
frame, all the information relevant to a particular concept is
stored in a single complex entity, called a frame [2].

4

Fig. 2. A system design for a typical knowledge based expert system. The system has a ask and a tell api. When information is added to the KB or a query
is submitted the system may call the inference engine to produce new information that is subsumed by the information currently in the KB.

Frames are structures that capture knowledge about a typical
object, event, or relation. Typically frames are composed of
an identifier, a set of superclasses, and a set of slots. For
example a frame Gray-Mammal captures information about
objects whose color slot is gray, like an elephant, and possess
characteristics of mammals, such as warm-blooded . Frame
based inference can take on different forms, but at the very
least must support inheritance [2]. Frames can also support
procedural based inference like product rules [6], [7] or general
problem solving procedure as discussed in [8].

To elaborate on some of the aspects of frame systems we
will discuss a specific implementation, the source code can
be found at this repository. This frame based expert system is
a toy example that helps track the freshness of food as time
progresses. The example is intended to help in demonstrating
the components of a frame based expert system. We will begin
with a discussion on the interface used to interact with the
system, we will then go on to the internal representation of
the system, and finally we will discuss how the system reasons
and derives new facts that are subsumed by the KB.

V. INTERFACE

The interface for the system is a command line interpreter
that reads one line at a time, interprets the line, then mutates
the state of the system based on the input as shown in figure 3.
There are two different means of knowledge acquisition man-
ual and automatic [7]; this implementation is a manual form
of knowledge acquisition. In fact, the most common way of
entering knowledge into the frame system is manual, i. e.
a knowledge engineer enters facts and assertions about the
domain [7].

Fig. 3. Main entry-point of the KB system. Reads input from the user and then
interprets that input to change the state of the KB and/or output information
for the user.

The language for the interface is specified using extended
backus-naur(EBNF) as shown in figure 4. The table I is
of valid sentences and their effects on the system. Further
explanation of the language used to interface with the system
is beyond the scope of this paper.

https://github.com/wenchnoob/Capstone.git

5

Sentence Effects

tell add class day [num-
ber:{number}]

A percept sentence using
the tell interface to add
information to the knowl-
edge base. The sentence
instructs the system to add
a class frame named day,
with no super-classes, a
slot number, and a facet
of number. The name sim-
ply serves as an identifier.
The set of super-classes
are for the purpose of in-
heritance. The slot is for
the purpose of information
storage and reasoning. Fi-
nally, the facets, which are
not always present, are for
the purpose of enforcing
constraints and enabling
inference.

tell add instance day 1
day []

A sentence that adds an
instance frame with the
name day 1 which inher-
its from the day class
frame. This causes the
day 1 frame to implicitly
add the number slot and
facet as well, which lets us
know that days are num-
bered.

ask day 1 Asks the KB for informa-
tion about a frame.

ask day 1 slot number
Asks the KB for infor-
mation about a slot on a
frame.

TABLE I
TABLE OF VALID SENTENCES AND THEIR EFFECTS ON THE SYSTEM

Fig. 4. EBNF Grammar for statements that can be used to interact with the
KB system.

VI. REPRESENTATION

The internal frame structure, as shown in figure 5, that was
built consisted of a reference to the frames name, type, set
of superclasses, set of sub-classes, and set of slots, which
each consist of a set of facets. The name field is used to
uniquely identify the frames. The type field is used to partition
the class and instance frames, so as to enforce the fact that
only class frames can be instantiated. Instance classes cannot
be re-instantiated. The superclasses and subclasses set are
for managing inheritance and type based queries, such as
TYPEOF. Finally slots are for storing information you know
to be true about a frame and facets enforce constraints on these
slots [6], [2], [5], [4].

Fig. 5. The code that defines the structure of a frame in the system. Frames
have a name, type, set of superclasses, set of subclasses, and a set of slots.
The slots themselves have a value/values and a set of facets.

VII. INFERENCE

In terms of reasoning and inference, the most straight-
forward means of inference in frame systems is inheritance,
the process of acquiring traits from a superclass [2], [6]. As
in the previous example, an elephant is a subclass of Gray-
Mammal and consequently it must have a color slot that takes
on the value of gray. In addition to inheritance, this system’s
frames also support detached procedural inference [4], [7]. In
our example we start with an empty KB and add information
to it using the commands in the first input of figure 6.

6

Fig. 6. A sequence of interactions with the KB using the aforementioned interface. Features both tell and ask operations. Note the fact that the frame Apple
inherits properties from Food that weren’t explicitly stated in the tell statement for the apple class. This is due to frame inheritance.

Then when the KB is queried it responds with the informa-
tion it has stored, and has inferred due to inheritance. If you
take a very close look at the input statement, you will notice
a sequence of these four statements:

• tell add class food {} [lifespan:{number},
start day:{day}, spoilage day:{day}, spoiled:]

• tell add class apple {food} []
• tell add instance apple1 {apple}
• tell update apple1 slot lifespan:3

After we update the KB, the structure of the frames are as
shown in figure 7. Despite not having explicitly added the
slots lifespan, start day, spoilage day, or spoiled to apple1;
when queried about it, the KB indicates that it has those slots.
This is because apple1 was specified to be a subclass of apple
which is a subclass of food. In addition, you may notice that
the value of the slot start day has been instantiated because
without it ever being added to the KB explicitly. This is due to
a stored procedure that updates the value of start day when an
instance of the food class is instantiated. In addition each time
a day passes that lifespan is decreased, and then eventually
when lifespan hits zero the food spoils and the spoiled slot is
set to yes, as shown in figure 8.

VIII. ADVANTAGES AND LIMITATIONS

Some advantages of frame-based systems are:

1) Programs can handle frames more easily
2) Makes the programming easier by grouping the related

data
3) Flexible
4) Easy to include default data
5) Easy to modify
6) Easy to understand and visualize

Some limitations to frame-based systems are:

1) Inadequate representation of knowledge
2) Necessity to work with the completely know character-

istics
3) Static knowledge domain
4) Representation of procedural knowledge as program-

ming code inside frames
5) Complex structures can decrease the performance of the

system inference and execution

[7].

IX. CONCLUSION

Frames are a common tool for knowledge representation
in expert systems/ai. They are used to represent and reason
about a stereotyped situation. Frame systems are expressive,
but have some limitations as detailed in section VIII. Despite
these limitations, frame-based representation of declarative and
procedural knowledge has a wide application, and has recently
been most prominent in healthcare and bio-medicine [7].

X. REFLECTION

During my time at CSBSJU, I have had the opportunity
to take multiple challenging courses that helped me build
my technical skills. I would say that all the courses helped
helped prepare me for this, but the courses that I would say
contributed the most to my success in this course are CSCI
340 (ORG OF PROGRAMMING LANGS), CSCI 200 (DATA
STRUCTURES), and CSCI 331 (DATABASE SYSTEMS).
CSCI 340 was a very interesting class that introduced me to
the different ideas behind programming languages, in the class
we discussed different programming paradigms and parsing
methodologies. CSCI 200 was important because it introduced
me to more structured and complex algorithmic problem
solving. Finally, CSCI 331 was useful because it thought
me ways to think about information and the structure of the
information.

Specifically regarding my research topic on Frames and
Knowledge Representation, CSCI 200 helped in just being able
to understand frames as a complex data structure. CSCI 331
helped in understanding the field of knowledge representation
in general. There exists different constraints that different at-
tributes may have. CSCI 340 also helped because we discussed
object oriented programming, which is one of the inspirations
for frame based knowledge representation. Also in CSCI 340,
I also learned a lot about parsing; so, I was able to build a
front end for my knowledge based expert system.

This research was of benefit first and foremost because
it thought me about knowledge representation and frames.
So, I have this additional piece of knowledge to build my
foundation as I continue to learn. In addition this research
also helped me in better understanding some of the material
from CSCI 317H (ARTIFICIAL INTELLIGENCE), which I
was in while doing my research. This research also has helped
improve my comfort and skill in terms of reading work in the
field of computer science. This project was a challenging, but
rewarding experience that helped me build skills that I believe
will be valuable for the rest of my life and career.

7

Fig. 7. A diagram of the frames in our system after the initial tell statements.

Fig. 8. This shows a sequence of tell operations that update the KB calender’s day, and then a sequence of ask operations that inspect the consequent state
of the KB.

REFERENCES

[1] An introduction to formal logics, Jan 2016.
[2] Alison. Frames, Aug 1994.
[3] Vinay Chaturvedi. Understanding artificial intelligence and machine

learning.
[4] Josefa Hernández and Juan Serrano. Knowledge-based models for

emergency management systems. Expert Systems with Applications, 20,
02 2001.

[5] Peter Clark Vulcan Inc., Peter Clark, Vulcan Inc., Phil Harrison Vulcan
Inc., Phil Harrison, Niranjan Balasubramanian University of Washington,
Niranjan Balasubramanian, University of Washington, Oren Etzioni
University of Washington, Oren Etzioni, and et al. Constructing a
textual kb from a biology textbook: Proceedings of the joint workshop
on automatic knowledge base construction and web-scale knowledge
extraction, Jun 2012.

[6] Marvin Minsky. A framework for representing knowledge, Jun 1974.

[7] Vladislavs Nazaruks and Janis Osis. A survey on domain knowledge
representation with frames. Proceedings of the 12th International
Conference on Evaluation of Novel Approaches to Software Engineering,
2017.

[8] James A. Reggia, Dana S. Nau, and Pearl Y. Wang. A new inference
method for frame-based expert systems. In Proceedings of the Third
AAAI Conference on Artificial Intelligence, AAAI’83, page 333–337.
AAAI Press, 1983.

[9] & Norvig P. Russell, S. J. Artificial Intelligence: A modern approach.
Prentice-Hall, 2010.

[10] stanfordonline. Logic 1 - propositional logic — stanford cs221: Ai
(autumn 2019), Dec 2020.

8

APPENDIX

LIST OF FIGURES

1 Model of a typical formulation for intelligent
agents in an environment. The environment can
have one or more agents, and several properties. 2

2 A system design for a typical knowledge based
expert system. The system has a ask and a tell
api. When information is added to the KB or
a query is submitted the system may call the
inference engine to produce new information that
is subsumed by the information currently in the
KB. 4

3 Main entry-point of the KB system. Reads input
from the user and then interprets that input to
change the state of the KB and/or output infor-
mation for the user. 4

4 EBNF Grammar for statements that can be used
to interact with the KB system. 5

5 The code that defines the structure of a frame
in the system. Frames have a name, type, set of
superclasses, set of subclasses, and a set of slots.
The slots themselves have a value/values and a
set of facets. 5

6 A sequence of interactions with the KB using
the aforementioned interface. Features both tell
and ask operations. Note the fact that the frame
Apple inherits properties from Food that weren’t
explicitly stated in the tell statement for the apple
class. This is due to frame inheritance. 6

7 A diagram of the frames in our system after the
initial tell statements. 7

8 This shows a sequence of tell operations that up-
date the KB calender’s day, and then a sequence
of ask operations that inspect the consequent state
of the KB. 7

LIST OF TABLES

I Table of valid sentences and their effects on the
system . 5

	Abstract
	Introduction
	Technical
	Frames
	Interface
	Representation
	Inference
	Advantages and Limitations
	Conclusion
	Reflection
	References
	Appendix

