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I. INTRODUCTION

As artificial intelligence (AI) advances, smart machines are
increasingly integrated into our daily lives. Recommendation
systems, text analytics, autonomous vehicles, medical diag-
nostics, and other AI-driven technologies are shaping critical
aspects of society, and many rely on these tools. However,
as these systems become more complex, understanding a
model’s decision-making process is essential for detecting
bias, debugging errors, ensuring transparency, and complying
with regulations.

Explainable AI (XAI) elucidates AI decision-making using
interpretability-focused machine learning techniques to under-
stand model outputs. Current literature reveals two distinct
XAI approaches: machine learning (ML) and user experi-
ence (UX).

• The ML approach utilizes tools to explain model output.
The field seeks to advance model performance, identify
and mitigate bias, debug errors, and promote industry
trust in AI systems [4].

• The UX approach investigates how users perceive and
interact with AI explanations, drawing from psychology
and human-computer interaction (HCI). This approach
evaluates whether a model’s output is interpretable (users
can understand it) and explainable (users can predict how
changes in input affect output). This approach aims to
foster user trust and reduce perceived risk [3].

XAI machine learning techniques can be categorized using
model characteristics: global explanations, local explanations,
model-specific, and model-agnostic (Figure 1).

SHAP (SHapley Additive exPlanations) is an XAI frame-
work established on Shapley values from coalitional game the-
ory. Shapley values provide a holistic view of how each feature
(variable) influences a model’s predictions [8]. SHAP’s generic
implementation is model agnostic, meaning SHAP can be
applied to any model, regardless of underlying structure [1].
A key advantage of SHAP is its ability to provide both local
and global model explanations [1].

• Global explanations describe the model as a whole,
revealing which features exert the greatest influence on
the model’s predictions.

• Local explanations quantify how each feature impacts a
single prediction.

SHAP is an open-source Python library that computes
“SHAP values” 1 by considering all possible feature com-
binations and averaging their marginal contributions. This

1SHAP values are Shapley values applied to a conditional expectation
function of a machine learning model [7].

paper explores SHAP’s role in enhancing machine learning
interpretability, evaluating its strengths and weaknesses, and
examining the SHAP library’s key features.

II. SHAP

A. Overview

SHAP is an explainability method based on Shapley values
in coalitional game theory. Coalitional game theory, also
known as cooperative game theory, is a model that describes
how groups of players, or coalitions, work together.

Let’s look at an analogy:
Imagine you’re at a potluck dinner where each guest
brings a dish. The overall meal enjoyment depends
on the combination of dishes. Some dishes, like a
well-seasoned main course, might have a greater
impact on the meal’s success, while others, like
a simple side dish, contribute less. How do we
determine how much each guest contributed to the
overall meal enjoyment?

In this analogy, each guest represents a feature (variable),
and their dish is the contribution. The overall meal satisfaction
is the prediction. Shapley values determine how much each
guest contributed to the meal enjoyment by evaluating different
combinations of dishes and the resulting prediction. In other
words, Shapley values quantify how each feature contributes
to the overall prediction and how that prediction changes when
joined to every possible combination of features [11].

Feature contribution 2 is a local measure of how a specific
feature contributes to a single prediction whereas feature
importance is a global measure that summarizes the overall
impact of a feature across all predictions.

By considering all possible combinations of features, Shap-
ley values provide a holistic view of how each feature influ-
ences the model’s prediction.

B. Mathematical Properties and Strengths

SHAP has numerous strengths beyond feature importance.
Shapley values are considered the “definition of a fair weight”
due to their mathematically desirable axioms [2], [5]:

• Efficiency. The sum of all feature contributions equals
the difference between the prediction and the model’s
average, ensuring Shapley values are fairly distributed
among features. For example, if the model predicts 60

2Feature contribution, in the context of Shapley values, is synonymous with
Shapley values and SHAP values. Therefore, the Shapley value or SHAP value
is the feature contribution.



Fig. 1. A Venn diagram categorizing XAI techniques by global vs. local explanations and model-specific vs. model-agnostic approaches. An XAI technique
can provide global and/or local explanations, but it cannot be both model-specific and model-agnostic. TreeSHAP, for example, provides both local and global
explanations and is model-specific. Created by the author, compiled using resources from [4], [1].

and the average prediction is 50, the Shapley values sum
to 10.

• Symmetry. If two features contribute equally to all possi-
ble coalitions, their Shapley values are equal.

• Dummy. A feature that does not impact the predicted
value has a Shapley value of 0.

• Linearity. If two coalition games are combined, the
Shapley value for each feature is the sum of its values in
both games.

These properties ensure that SHAP is a fair and reliable
method for explaining model predictions.

As a model-agnostic XAI method, SHAP can explain any
machine learning model, including enigmatic black-box mod-
els like deep neural networks.

Another key advantage of SHAP is its ability to provide
both local and global explanations through plot visualization
tools.

• Local explanations provide instance-specific explana-
tions [1]. For example, consider a model that predicts the
probability of a loan applicant defaulting based on factors
like annual income and credit score. A local explanation
lists the SHAP value for each feature, indicating how

it influenced the final prediction. Figure 3 displays the
global average prediction, E[f(x)] = 0.28, and shows
that a Monthly Debt of 12316 increased the probability
of this specific individual defaulting on their loan by 0.04.

• Global explanations average SHAP values across in-
stances to reveal features that generally exert the greatest
influence on predictions [1]. Figure 2 indicates Current
Loan Amount typically has the greatest influence on in-
dividual predictions. The information gained from global
analysis can be used to fine-tune the model and address
potential biases [2].

C. Use Cases

SHAP can interpret model output for numeric and non-
numeric data, such as text. The following examples illustrate
SHAP’s use cases based on a model’s training data:

• Tabular. Structured data organized in rows and columns,
typically stored in spreadsheets. Each row is an obser-
vation, and each column is a specific observation feature
(e.g., age, gender, income). Examples include census data
and medical records.
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• Text. Unstructured natural language data such as docu-
ments, articles, social media posts, or emails.

• Image. Image data, represented as pixel grids with height,
width, and color channels (e.g., RGB channels in a color
image). Examples include satellite and medical images.

• Genomic. Genetic data from organisms, typically a se-
quence of nucleotides (A, T, C, G in DNA) or other
biological features. Examples include DNA sequences
and gene expression data.

SHAP is compatible with any ML model, regardless of
training data.

D. Explainers

SHAP is a model-agnostic and model-specific XAI tool,
as the SHAP library possesses several “explainers,” some
of which are model-specific and others model-agnostic (Fig-
ure 1). For example, the model-specific TreeExplainer
(known as TreeSHAP) is specifically designed for tree-based
ML models (e.g., RandomForest, XGBoost, LightGBM, Cat-
Boost). The model-agnostic KernelExplainer (known
as KernelSHAP) is compatible with any machine learning
model. Other explainers include LinearSHAP, DeepSHAP, and
GradientSHAP, among others [7].

E. Visualization Methods

After selecting an appropriate explainer for a model’s archi-
tecture, SHAP has several plots for visualizing the calculated
SHAP values. Each tool provides unique data insights. Below
are a few examples [7]:

• Bar plot. Displays each feature’s global average SHAP
value, representing its average contribution to the target
variable (Figure 2). Features are ranked by influence,
from most to least. Variations include local bar plot and
cohort bar plot.

• Waterfall plot. Displays the vector SHAP value for each
feature in a local prediction, illustrating each feature’s
contribution (Figure 3). The waterfall structure reveals
the additive nature of positive and negative contributors
from the model’s base value (global average prediction)
to the local prediction, building from the bottom up. The
most important feature is listed first.

• Heatmap. Displays a plot with all instances on the x-axis,
features on the y-axis, and SHAP values encoded on a
color scale. Darker colors represent greater SHAP effects.
Figure 4 illustrates the SHAP values for a model trained
to predict whether individuals in the 1990s earned more
than $50, 000 per year. The black bar chart to the right
depicts each feature’s global mean SHAP value, while the
f(x) line represents the predicted value for the specific
instance.

• Beeswarm plot. Displays the distribution of SHAP values
for each feature across all instances in the data set
(Figure 5). Where SHAP values are dense, points are
stacked vertically. The x-axis represents the SHAP value,
indicating the importance of each feature in determining
the prediction. The point’s color represents the feature’s

Fig. 2. A SHAP bar plot [9]. Displays each feature’s global average SHAP
value, representing its average contribution to the target variable. Features are
ranked by influence, from most to least.

Fig. 3. A SHAP waterfall plot [9]. Displays the vector SHAP value for
each feature in a local prediction, illustrating each feature’s contribution.
The waterfall structure reveals the additive nature of positive and negative
contributors from the model’s base value (global average prediction) to the
local prediction, building from the bottom up. The most important feature is
listed first.

value (red is high, blue is low). A red dot increases the
prediction value, whereas a blue dot decreases.

F. Limitations

Shapley values in their original form suffer from expo-
nentially increasing computational complexity as the number
of features grows [1]. Implementations of SHAP, such as
KernelSHAP and DeepSHAP, estimate Shapley values using
fewer computational resources.

Although Shapley values offer comprehensive insight into
a model’s decision making, SHAP is prone to the following
limitations:

• Challenges with high-dimensional data. A high-
dimensional dataset is one with many features. SHAP
can become computationally infeasible with high-
dimensional data, limiting its ability to provide accurate
and timely explanations [2].

• Interpretability vs. Complexity (Accuracy) trade-off.
SHAP offers local interpretability at the cost of global
accuracy. It can approximate each feature’s contribution,
but may not accurately reflect the model’s global, intricate
relationships [2].

• Sensitivity to correlated features. SHAP assumes that
features are independent, but real-world datasets often
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Fig. 4. A SHAP heatmap plot [7]. Displays a plot with all instances on the x-
axis, features on the y-axis, and SHAP values encoded on a color scale. Darker
colors represent greater SHAP effects. This chart depicts the SHAP values
for a model trained to predict whether individuals in the 1990s earned more
than $50, 000 per year. The black bar chart to the right depicts each feature’s
global mean SHAP value, while the f(x) line represents the predicted value
for the specific instance.

Fig. 5. A SHAP beeswarm plot [7]. Displays the distribution of SHAP values
for each feature across all instances in the data set. Where SHAP values are
dense, points are stacked vertically. The x-axis represents the SHAP value,
indicating the importance of each feature in determining the prediction. The
point’s color represents the feature’s value (red is high, blue is low). A red
dot increases the prediction value, whereas a blue dot decreases.

contain correlated variables. SHAP cannot be used for
causal inference [10].

• Subject to human error. An accurate interpretation of
SHAP values requires domain expertise. Without it, there
is a risk of misinterpretation, confirmation bias, and
misleading conclusions [10].

A 2023 paper, The Inadequacy of Shapley Values for Ex-
plainability, argues that Shapley values can provide misleading
results [6]. Further analysis and cross-validation of these
claims will be explored in Phase C.

III. FUTURE RESEARCH

In future iterations of my research, I will aim to answer the
following questions:

1) How are Shapley values calculated? What equations are
used?

2) What are TreeSHAP’s underlying computational me-
chanics?

3) How does SHAP compare with other XAI methods, such

as LIME (Local Interpretable Model-Agnostic Explana-
tions)?

4) Given discrepancies in the adequacy of Shapley values
for explainability, is reconciling these inconsistencies
possible?

IV. CONCLUSION

As AI becomes more integrated into society, transparency
in model decision-making is essential for debugging errors,
detecting bias, ensuring transparency, and complying with
regulations.

SHAP, a model-agnostic XAI tool, leverages Shapley values
from cooperative game theory to provide a mathematically
rigorous approach for determining feature contributions in
machine learning models. SHAP provides both local and
global explanations.

The SHAP Python library includes multiple visualiza-
tion tools, such as bar plots, waterfall plots, heatmaps, and
beeswarm plots, each offering unique insights into feature
importance and model behavior.

Despite its strengths, SHAP is not without limitations.
Challenges such as computational complexity, sensitivity to
feature correlation, and the necessity of domain expertise for
accurate interpretation highlight areas for further refinement.

Future research will investigate the mathematical equations
used to derive Shapley values, examine TreeSHAP’s com-
putational mechanics, and compare SHAP and other XAI
methods, such as LIME (Local Interpretable Model-Agnostic
Explanations). Additionally, given discrepancies regarding the
adequacy of Shapley values for explainability, future research
will investigate whether these inconsistencies can be recon-
ciled.
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