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I. INTRODUCTION

A c artificial intallicanca (AT advaoncoc crart machinac ara
xS aFaaCiar e genet(ay atVvanees;-smarcmacnines—are

inereasingly-integrated-into—our-daily lives: Recommendation
systems, text analytics, autonomous vehicles, medical diag-
nostics, and other Al-driven technologies are shaping critical
aspects of society, and many rely on these tools. However,
as these systems become more complex, understanding a
model’s decision-making process is essential for detecting
bias, debugging errors, ensuring transparency, and complying
with regulations.

Explainable AI (XAI) elucidates Al decision-making using
interpretability-focused machine learning techniques to under-
stand model outputs. Current literature reveals two distinct
XAI approaches: machine learning (ML) and user experi-
ence (UX).

o The ML approach utilizes tools to explain model output.
The field seeks to advance model performance, identify
and mitigate bias, debug errors, and promote industry
trust in Al systems [5].

e The UX approach investigates how users perceive and
interact with Al explanations, drawing from psychology
and human-computer interaction (HCI). This approach
evaluates whether a model’s output is interpretable (users
can understand it) and explainable (users can predict how
changes in input affect output). This approach aims to
foster user trust and reduce perceived risk [3].

XAI machine learning techniques can be categorized using
model characteristics: global explanations, local explanations,
model-specific, and model-agnostic (Figure 1).

SHAP (SHapley Additive exPlanations) is an XAI frame-
work established on Shapley values from coalitional game the-
ory. Shapley values provide a holistic view of how each feature
(variable) influences a model’s predictions [9]. SHAP’s generic
implementation is model agnostic, meaning SHAP can be
applied to any model, regardless of underlying structure [1].
A key advantage of SHAP is its ability to provide both local
and global model explanations [1].

o Global explanations describe the model as a whole,
revealing which features exert the greatest influence on
the model’s predictions.

o Local explanations quantify how each feature impacts a
single prediction.

SHAP is an open-source Python library that computes

“SHAP values” ! by considering all possible feature com-
binations and averaging their marginal contributions. SHAP

'SHAP values are Shapley values applied to a machine learning model [8].

=

values quantify the difference between the prediction and the
model’s global average prediction. This paper explores the
mathematical properties of Shapley values, the underlying
implementation of TreeSHAP, and tools in the SHAP library,
including plots, explainers, and how Shapley values, despite
their mathematical grounding, can be misleading for explain-
ability.

II. OVERVIEW

SHAP is an explainability method based on Shapley values
in coalitional game theory. Coalitional game theory, also
known as cooperative game theory, is a model that describes
how groups of players, or coalitions, work together.

Let’s look at an analogy:

Imagine you’re at a potluck dinner where each guest
brings a dish. The overall meal enjoyment depends
on the combination of dishes. Some dishes, like a
well-seasoned main course, might have a greater
impact on the meal’s success, while others, like
a simple side dish, contribute less. How do we
determine how much each guest contributed to the
overall meal enjoyment?

In this analogy, each guest represents a feature (variable),
and their dish is the contribution. The overall meal satisfaction
is the prediction. Shapley values determine how much each
guest contributed to the meal enjoyment by evaluating different
combinations of dishes and the resulting prediction. In other
words, Shapley values quantify how each feature contributes
to the overall prediction and how that prediction changes when
joined to every possible combination of features [12].

Feature contribution ? is a local measure of how a specific
feature contributes to a single prediction whereas feature
importance is a global measure that summarizes the overall
impact of a feature across all predictions.

By considering all possible combinations of features, Shap-
ley values provide a holistic view of how each feature influ-
ences the model’s prediction.

III. CALCULATING SHAPLEY VALUES

The Shapley value ¢; for a feature ¢ is defined in Figure 2.

To better understand this formula, let’s use an example.
Consider three players, Player 1 (P1), Player 2 (P2), and Player
3 (P3) who enter a pie baking contest.

2 Feature contribution, in the context of Shapley values, is synonymous with
Shapley values and SHAP values. Therefore, the Shapley value or SHAP value
is the feature contribution.
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A Venn diagram categorizing XAl techniques by global vs. local explanations and model-specific vs. model-agnostic approaches. An XAI technique

can provide global and/or local explanations, but it cannot be both model-specific and model-agnostic. TreeSHAP, for example, provides both local and global
explanations and is model-specific. Created by the author, compiled using resources from [5], [1].
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Fig. 2. Shapley value equation [4].

P1, P2, and P3 decide to work together and place first,
winning $1,000 (C123 = 1, 000). 3

How should P1, P2, and P3 divide the prize money? Pl
created the recipe, P2 measured and mixed the ingredients,
and P3 baked the pie.

Assume we travel back in time (SHAP would re-query
the model with different feature combinations) and test out
different player combinations. Individually,

e P1 wins $500 (C7 = $500),
o P2 wins $500 (C5 = $500), and
e P3 wins $0 (C5 = $0).

30123 is the value of the coalition P1, P2, and P3.

(v(S U {i}) —v(S))

Marginal contribution of player ¢ to
coalition S

V]!

If P1, P2, or P3 do not compete, none of these players win
any prize money (Cy = 0).

We also learn, when working as a team,

e P1 and P2 win $750 (C12 = $750),

e P1 and P3 win $750 (C13 = $750), and

e P2 and P3 win $500 (Ca3 = $500).

We can calculate the marginal contributions for each player
by quantifying how much they increase the coalition’s value
when they join the coalition:

A. PI’s Marginal Contributions

e P1 can join a coalition of P2 and P3:
Cia3 — Ca3 = $1,000 — $500 = $500



e P1 can join a coalition of P2:
Cya — Cy = $750 — $500 = $250

o P1 can join a coalition of P3:
Cy3 — C3 = $750 — $0 = $750

o P1 can join a coalition of no players:
Cy — Cy = $500 — $0 = $500

B. PI’s Expected Marginal Contribution

To calculate the expected marginal contribution (Shapley
value) of P1, we need to determine the probability that P1
makes these respective marginal contributions.

To calculate the probability of the first marginal contribu-
tion, P(Ch23 — Cas), we need to determine the likelihood that
P1 makes a marginal contribution to a coalition of P2 and P3.

To start, we need to determine the number of ways a
coalition of three players can form (we use three players, since
this was the size of the team in the original scenario), assuming
players join sequentially with equal chance:

e P1 +P2 +P3

e« P1 +P3+P2

e P2 +P3 +PI

e« P2+ Pl +P3

e P3+P1 +P2

e P3+P2+ Pl

P1 joins a coalition of P2 and P3 in 2 of the 6 scenarios,
SO P(Clgg — 023) = 2/3 = 1/3.

We then multiply the weighted probability (1/3) by the
marginal contribution (C123 — C3 = $500) and repeat this
process for the remaining marginal contributions we get:

. P(Clgg — 023) . (0123 — 023) = 1/3 . $500

. P(Clg — CQ) . (012 — CQ) = 1/6 . $250

. P(Clg — 03) . (013 — 03) = 1/6 . $750

. P(Cl — Co) . (01 - Oo) = 1/3 . $5OO

When we sum all values, we calculate P1’s Shapley value
= $500.

In other words, P1 should receive $500 of the original
$1,000 prize money.

Following the same steps above, the expected marginal
contributions of P2 and P3 are $375 and $125, respectively.

IV. MATHEMATICAL PROPERTIES AND STRENGTHS

SHAP values are considered a “definition of a fair weight”
due to their mathematically desirable axioms [2], [6]:

o Efficiency. The sum of all feature contributions equals
the difference between the prediction and the model’s
average, ensuring Shapley values are fairly distributed
among features. For example, if the model predicts 60
and the average prediction is 50, the Shapley values sum
to 10.

o Symmetry. If two features contribute equally to all possi-
ble coalitions, their Shapley values are equal.

e Dummy. A feature that does not impact the predicted
value has a Shapley value of 0.

o Linearity. If two coalition games are combined, the
Shapley value for each feature is the sum of its values in
both games.

These properties ensure that SHAP is a fair and reliable
method for explaining model predictions.

Another key advantage of SHAP is its versatility. It can
explain any machine learning model, including enigmatic
black-box models, and provides local and global explanations
through plot visualization tools.

e Local explanations provide instance-specific explana-
tions [1]. For example, consider a model that predicts the
probability of a loan applicant defaulting based on factors
like annual income and credit score. A local explanation
lists the SHAP value for each feature, indicating how
it influenced the final prediction. Figure 4 displays the
global average prediction, E[f(z)] = 0.28, and shows
that a Monthly Debt of 12316 increased the probability
of this specific individual defaulting on their loan by 0.04.

e Global explanations average SHAP values across in-
stances to reveal features that generally exert the greatest
influence on predictions [1]. Figure 3 indicates Current
Loan Amount typically has the greatest influence on in-
dividual predictions. The information gained from global
analysis can be used to fine-tune the model and address
potential biases [2].

V. USE CASES

SHAP can interpret model output for numeric and non-
numeric data, such as text. The following examples illustrate
SHAP’s use cases based on a model’s training data:

o Tabular. Structured data organized in rows and columns,
typically stored in spreadsheets. Each row is an obser-
vation, and each column is a specific observation feature
(e.g., age, gender, income). Examples include census data
and medical records.

o Text. Unstructured natural language data such as docu-
ments, articles, social media posts, or emails.

o Image. Image data, represented as pixel grids with height,
width, and color channels (e.g., RGB channels in a color
image). Examples include satellite and medical images.

e Genomic. Genetic data from organisms, typically a se-
quence of nucleotides (A, T, C, G in DNA) or other
biological features. Examples include DNA sequences
and gene expression data.

SHAP is compatible with any ML model, regardless of
training data.

VI. EXPLAINERS

SHAP is a model-agnostic and model-specific XAl tool,
as the SHAP library possesses several ‘“explainers,” some
of which are model-specific and others model-agnostic (Fig-
ure 1). For example, the model-specific TreeExplainer
(known as TreeSHAP) is specifically designed for tree-based
ML models (e.g., RandomForest, XGBoost, LightGBM, Cat-
Boost). The model-agnostic KernelExplainer (known as
KernelSHAP) is compatible with any ML model. Other ex-
plainers include LinearSHAP, DeepSHAP, and GradientSHAP,
among others [8].



Algorithm 1 TreeSHAP [10]

procedure TS(x,tree = {v,a,b,t,r,d})
¢ = array of len(z) zeros
procedure RECURSE(j, m, ., po, ;)
m = EXTEND(mvpzapoapi)
if v; # internal then
for i < 2 to len(m) do
w = sum(UNWIND(m, ).w)
¢mi = d)mi + w(mi'o - mi'z)vj

end for

else
h,C = iCd]. S tj 7 (aj,b]-) : (bj7aj)
1, =1o=1

k = FINDFIRST(m.d, d;)
if k£ # nothing then
ix,00 = (Mk.2,Myp.0)
m = UNWIND(m, k)
end if
RECURSE(h, m, 1,71 /7}, 10, d;)
RECURSE(c, m, i,r./r;,0,d;)
end if
end procedure
procedure EXTEND(m, p., po, Pi)
I =len(m)
m = copy(m)
my11.(d, z,0,w) = (pi, P2, Po, L =07 1:0)
fori<[—1to1 do
Migp1.W = Mip1.0 + pomiw(i/l)
m;w = p,m;w[(l =)/
end for
return m
end procedure
procedure UNWIND(m, )
I =len(m)
n=m;.w
m = copy(mq. j—1)
for j«i—1to1l do
if m;.o # 0 then
t=m;w
mj.w=mn-1/(j-m;.0)
n=t—m;w-m;.z((l —3)/1)
else
mj.w = (mj.w-1)/(mi.z(l — 7))
end if
end for
for j«<itol—1do
m;.(d, z,0) = mjy1.(d, z,0)
end for
return m
end procedure
RECURSE(1,[],1,1,0)
return ¢
end procedure

A. TreeSHAP

TreeSHAP is an explainer in the SHAP library specifically
for tree-based models such as RandomForest, XGBoost, Light-
GBM, and CatBoost. Like all SHAP explainers, TreeSHAP de-
termines the contribution of each input feature to the model’s
prediction. However, TreeSHAP is a unique explainer, as it
precisely calculates SHAP values, whereas all other explainers
approximate SHAP values through sampling methods [8].

Calculating SHAP values directly by testing all possible
pathways through every tree is computationally infeasible for
all but the smallest trees or datasets. However, the TreeSHAP
algorithm, defined in Algorithm 1, allows us to compute the
exact SHAP value in O(T'LD?) time complexity and O(D? +
M) memory complexity [10], where

e T is the number of trees,

e L is the maximum number of leaves in any tree,

o M is the number of features, and

¢ D is the maximum depth of any tree.

Instead of explicitly listing and evaluating all possible 2
feature subsets, TreeSHAP recursively tracks how the entire
collection of possible subsets would distribute themselves
down the specific prediction path, tracking the flow of subsets.

High-level summary. For example, imagine all possible fea-
ture combinations starting at the tree’s root. As the algorithm
traverses the path, dictated by the instance’s values, TreeSHAP
does not keep a list of which specific subsets go down each
branch but maintains path summary information.

This summary information includes details about the pro-
portions and aggregated weights of every possible subsets of
features, up to the total number of features involved in the path
so far. When the traversal ends at a leaf node, this information
is used to calculate each feature’s SHAP value.

Detailed walkthrough. Start at the root. The initial summary
information represents the state before any feature splits,
meaning all subsets are possible.

At each internal node along the path (including the root
node)

1) Decide how to split using the feature and threshold

information.

2) If the feature has not yet been encountered on the tree,

a) Update summary information to reflect the conse-
quences of this split by adjusting the proportion
of subsets that include versus exclude the splitting
feature, reflecting the number of instances now
“following” this decision path.

b) Update the aggregated weights associated with
different subset sizes.

3) If the feature has been encountered,

a) TreeSHAP performs a reversal procedure that tem-
porarily undoes the effect of the previous split
involving the same feature before updating the
tracking information. This ensures that the update
reflects the marginal impact of the current split
decision relative to the state immediately preceding
it. Without this reversal effect, TreeSHAP would
measure the impact of the feature’s second split
using data that reflects the influence of its first split,



confounding its marginal contribution rather than
isolating this lower-node decision.

b) After the reversal, update the summary informa-
tion.

Every leaf node stores a prediction value, representing the
model’s output for that decision path. When the model reaches
a leaf, the summary information reflects the cumulative effect
of all path splits.

To determine the SHAP value for each feature encountered
on the path, TreeSHAP uses the reversing procedure to re-
move each feature from the final summary state. The change
observed in the expected output value during each removal
reveals the feature’s contribution (SHAP value).

For models composed of multiple trees, the process above is
performed independently for each tree in the ensemble, using
the same input features. A feature’s SHAP value is calculated
by adding its SHAP value from all trees.

VII. VISUALIZATION METHODS

After selecting an appropriate explainer for a model’s archi-
tecture, SHAP has several plots for visualizing the calculated
SHAP values. Each tool provides unique data insights. Below
are a few examples [8]:

e Bar plot. Displays each feature’s global average SHAP
value, representing its average contribution to the target
variable (Figure 3). Features are ranked by influence,
from most to least. Variations include local bar plot and
cohort bar plot.

o Waterfall plot. Displays the vector SHAP value for each
feature in a local prediction, illustrating each feature’s
contribution (Figure 4). The waterfall structure reveals
the additive nature of positive and negative contributors
from the model’s base value (global average prediction)
to the local prediction, building from the bottom up. The
most important feature is listed first.

e Heatmap. Displays a plot with all instances on the x-axis,
features on the y-axis, and SHAP values encoded on a
color scale. Darker colors represent greater SHAP effects.
Figure 5 illustrates the SHAP values for a model trained
to predict whether individuals in the 1990s earned more
than $50, 000 per year. The black bar chart to the right
depicts each feature’s global mean SHAP value, while the
f(z) line represents the predicted value for the specific
instance.

e Beeswarm plot. Displays the distribution of SHAP values
for each feature across all instances in the data set
(Figure 6). Where SHAP values are dense, points are
stacked vertically. The x-axis represents the SHAP value,
indicating the importance of each feature in determining
the prediction. The point’s color represents the feature’s
value (red is high, blue is low). A red dot increases the
prediction value, whereas a blue dot decreases.

VIII. LIMITATIONS

Shapley values in their original form suffer from expo-
nentially increasing computational complexity as the number
of features grows [1]. However, implementations of SHAP
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Fig. 3. A SHAP bar plot [11]. Displays each feature’s global average SHAP
value, representing its average contribution to the target variable. Features are
ranked by influence, from most to least.
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Fig. 4. A SHAP waterfall plot [11]. Displays the vector SHAP value for
each feature in a local prediction, illustrating each feature’s contribution.
The waterfall structure reveals the additive nature of positive and negative
contributors from the model’s base value (global average prediction) to the
local prediction, building from the bottom up. The most important feature is
listed first.
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Fig. 5. A SHAP heatmap plot [8]. Displays a plot with all instances on the x-
axis, features on the y-axis, and SHAP values encoded on a color scale. Darker
colors represent greater SHAP effects. This chart depicts the SHAP values
for a model trained to predict whether individuals in the 1990s earned more
than $50, 000 per year. The black bar chart to the right depicts each feature’s
global mean SHAP value, while the f(x) line represents the predicted value
for the specific instance.
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Fig. 6. A SHAP beeswarm plot [8]. Displays the distribution of SHAP values
for each feature across all instances in the data set. Where SHAP values are
dense, points are stacked vertically. The x-axis represents the SHAP value,
indicating the importance of each feature in determining the prediction. The
point’s color represents the feature’s value (red is high, blue is low). A red
dot increases the prediction value, whereas a blue dot decreases.

estimate Shapley values using fewer computational resources
using sampling techniques.

A 2023 paper, The Inadequacy of Shapley Values for
Explainability [7], argues that Shapley values can provide
misleading results even though Shapley values are theoretically
grounded in game theory.

Using proofs and experimental data, the authors demonstrate
that Shapley values can yield provably misleading information
about the relative importance of features.

The paper identifies key issues with using Shapley values
for feature importance:

o Irrelevant features can have a non-zero importance.

o Irrelevant features can be ranked higher than relevant

ones.

o Relevant features can have zero importance.

How are Shapley values misleading despite satisfying math-
ematical fairness axioms? While the paper agrees that Shapley
values satisfy the efficiency, symmetry, dummy, and linearity
axioms, it argues that these axioms do not translate into a
reliable measure of feature relevance. Why? Because there is
a difference between mathematical impact (used by Shapley
values) and logical relevance. The mathematical properties
guaranteed by Shapley value axioms do not guarantee logical
relevance [7].

A. Logical Relevance

Logical relevancy is defined using Abductive Explanations
(AXp). An AXp represents a minimal (irreducible) set of fea-
tures whose values, if fixed according to the specific instance
explained, are sufficient to guarantee the model’s prediction
outcome [7].

o A feature is logically relevant for a prediction if included

in at least one AXp for that prediction.

o If a feature is not part of any AXp, it is logically

irrelevant.

Let’s use an analogy to clarify this concept: Imagine baking
a Granny Smith apple pie. There might be several ways to
bake this pie using the absolute minimum essential ingredients.

One minimal recipe requires flour, butter, water, Granny Smith
apples, sugar, and cinnamon. Another minimal recipe uses pre-
made pie crust, Granny Smith apples, sugar, and cinnamon.

o An ingredient is “logically relevant” if it appears on at
least one essential ingredient list. In this case, Granny
Smith apples, sugar, cinnamon, flour, butter, water, and
pre-made pie crust are all logically relevant because
they’re needed for at least one minimal recipe.

e An ingredient is “logically irrelevant” if it does not
appear in any minimal recipe. For example, “a scoop of
ice cream” or “confectioner’s sugar” is not a minimum
ingredient required to bake the pie.

Logical relevancy for the Granny Smith pie (the model’s
specific prediction) means identifying ingredients (features)
that are absolutely necessary in at least one “bare-bones”
recipe (the minimal sets, or AXps) to make that specific pie.

B. Mathematical Impact

Shapley values measure the average marginal contribution
of a feature across all possible coalitions. Because the final
Shapley value for a feature is an average of its contribution in
many different coalition contexts, the specific contribution in
one particular context can be eliminated through the averaging
process. For example,

o A feature might be crucial in one minimal set, but if its
contribution is zero or negative in many other coalitions,
its Shapley value could be zero.

o Conversely, a feature might never be part of any minimal
set (logically irrelevant), but has a small positive or
negative contribution when added to various non-minimal
coalitions. If these small contributions don’t average
to zero, the feature is incorrectly assigned a non-zero
Shapley value.

These examples illustrate how the logical relevancy of a
feature can diverge from the averaged contribution measured
by its Shapley value for a specific instance.

C. SHAP Alternatives

The authors briefly introduce an alternative measure of
feature importance: enumerate all the AXp’s of an explanation
problem, and rank the features by their occurrence in expla-
nations, giving more weight to the smaller explanations. Such
a measure ensures irrelevant features’ score is 0. However,
enumerating all AXp is generally exponentially complex,
making it computationally infeasible for large problems [7].

D. Conclusion

In summary, Shapley values can be misleading because
mathematical impact does not guarantee logical relevance.
Despite satisfying fairness axioms, Shapley values may assign
non-zero importance to irrelevant features or overlook relevant
ones, as defined by AXp. These limitations demand caution if
relying on Shapley values for model interpretability.
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IX. CONCLUSION

As Al becomes more integrated into society, transparency
in model decision-making is essential for debugging errors,
detecting bias, ensuring transparency, and complying with
regulations.

SHAP, a model-agnostic XAl tool, leverages Shapley values
from cooperative game theory to provide a mathematical
approach for determining feature contributions in machine
learning models. SHAP provides both local and global ex-
planations.

The SHAP Python library includes multiple visualiza-
tion tools, such as bar plots, waterfall plots, heatmaps, and
beeswarm plots, each offering unique insights into feature
importance and model behavior.

SHAP is not without limitations. Because the mathematical
impact measured by Shapley values doesn’t always align with
logical relevance, recent research argues that Shapley val-
ues, despite their mathematical grounding, can be misleading
for explainability. While logical relevance alternatives exist,
they can be computationally infeasible. Therefore, caution
is needed when relying solely on Shapley values for model
interpretability.
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