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Abstract—As machine learning systems increasingly impact
high-stakes domains, there is a growing demand for transparency
in model decision-making. This paper addresses the challenge of
model interpretability by focusing on SHAP (SHapley Additive
exPlanations), an explainable AI (XAI) method grounded in
cooperative game theory. SHAP assigns each input feature a
contribution value toward a model’s output using Shapley values,
offering both global and local explanations across model types.
We explore SHAP’s mathematical foundations, including its
fairness axioms and the efficiency of TreeSHAP for tree-based
models. Through a case study using the a Titanic dataset, we
demonstrate SHAP’s utility in uncovering both expected and
hidden insights. However, we also highlight SHAP’s ability to
misrepresent feature relevance due to the divergence between

mathematical impact and logical necessity. Our findings suggest
that while SHAP is a valuable XAI tool, it should be applied with
complementary methods to ensure robust model explanations.

I. INTRODUCTION

As artificial intelligence (AI) advances, smart machines are
increasingly integrated into our daily lives. Recommendation
systems, text analytics, autonomous vehicles, medical diag-
nostics, and other AI-driven technologies are shaping critical
aspects of society. However, as these systems become more
complex, understanding a model’s decision-making process
is essential for detecting bias, debugging errors, ensuring
transparency, and complying with regulations.

Explainable AI (XAI) elucidates AI decision-making using
interpretability-focused machine learning techniques to under-
stand model outputs. Current literature reveals two distinct
XAI approaches: machine learning (ML) and user experi-
ence (UX).

• The ML approach utilizes tools to explain model output.
The field seeks to advance model performance, identify
and mitigate bias, debug errors, and promote industry
trust in AI systems [5].

• The UX approach investigates how users perceive and
interact with AI explanations, drawing from psychology
and human-computer interaction (HCI). This approach
evaluates whether a model’s output is interpretable (users
can understand it) and explainable (users can predict how
changes in input affect output). This approach aims to
foster user trust and reduce perceived risk [3].

XAI machine learning techniques can be categorized using
model characteristics: global explanations, local explanations,
model-specific, and model-agnostic (Figure 1).

SHAP (SHapley Additive exPlanations) is an XAI frame-
work established on Shapley values from coalitional game
theory. Shapley values provide a holistic view of how each fea-
ture (variable) influences a model’s predictions [12]. SHAP’s
generic implementation is model agnostic, meaning SHAP
can be applied to any model, regardless of underlying struc-
ture [1]. A key advantage of SHAP is its ability to provide
both local and global model explanations [1].

• Global explanations describe the model as a whole,
revealing which features exert the greatest influence on
the model’s predictions.

• Local explanations quantify how each feature impacts a
single prediction.



Fig. 1. A Venn diagram categorizing XAI techniques by global vs. local explanations and model-specific vs. model-agnostic approaches. An XAI technique
can provide global and/or local explanations, but it cannot be both model-specific and model-agnostic. TreeSHAP, for example, provides both local and global
explanations and is model-specific. Created by the author, compiled using resources from [5], [1].

SHAP is an open-source Python library that computes
“SHAP values” 1 by considering all possible feature com-
binations and averaging their marginal contributions. SHAP
values quantify the difference between the prediction and the
model’s global average prediction. This paper explores the
mathematical properties of Shapley values, the underlying
implementation of TreeSHAP, and tools in the SHAP library,
including plots, explainers, and how Shapley values, despite
their mathematical grounding, can be misleading for explain-
ability.

II. OVERVIEW

SHAP is an explainability method based on Shapley values
in coalitional game theory. Coalitional game theory, also
known as cooperative game theory, is a model that describes
how groups of players, or coalitions, work together.

Let’s look at an analogy:
Imagine you’re at a potluck dinner where each guest
brings a dish. The overall meal enjoyment depends
on the combination of dishes. Some dishes, like a

1SHAP values are Shapley values applied to a machine learning model [11].

well-seasoned main course, might have a greater
impact on the meal’s success, while others, like
a simple side dish, contribute less. How do we
determine how much each guest contributed to the
overall meal enjoyment?

In this analogy, each guest represents a feature (variable),
and their dish is the contribution. The overall meal satisfaction
is the prediction. Shapley values determine how much each
guest contributed to the meal enjoyment by evaluating different
combinations of dishes and the resulting prediction. In other
words, Shapley values quantify how each feature contributes
to the overall prediction and how that prediction changes when
joined to every possible combination of features [17].

Feature contribution 2 is a local measure of how a specific
feature contributes to a single prediction whereas feature
importance is a global measure that summarizes the overall
impact of a feature across all predictions.

By considering all possible combinations of features, Shap-
ley values provide a holistic view of how each feature influ-

2Feature contribution, in the context of Shapley values, is synonymous with
Shapley values and SHAP values. Therefore, the Shapley value or SHAP value
is the feature contribution.
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ences the model’s prediction.

III. CALCULATING SHAPLEY VALUES

The Shapley value ϕi for a feature i is defined in Figure 2.
To better understand this formula, let’s use an example.

Consider three players, Player 1 (P1), Player 2 (P2), and Player
3 (P3), who enter a pie baking contest.

P1, P2, and P3 decide to work together and place first,
winning $1,000 (C123 = 1, 000). 3

How should P1, P2, and P3 divide the prize money? P1
created the recipe, P2 measured and mixed the ingredients,
and P3 baked the pie.

Assume we travel back in time (SHAP would re-query
the model with different feature combinations) and test out
different player combinations. Individually,

• P1 wins $500 (C1 = $500),
• P2 wins $500 (C2 = $500), and
• P3 wins $0 (C3 = $0).
If P1, P2, or P3 do not compete, none of these players win

any prize money (C0 = 0).
We also learn, when working as a team,
• P1 and P2 win $750 (C12 = $750),
• P1 and P3 win $750 (C13 = $750), and
• P2 and P3 win $500 (C23 = $500).
We can calculate the marginal contributions for each player

by quantifying how much they increase the coalition’s value
when they join the coalition:

A. P1’s Marginal Contributions

• P1 can join a coalition of P2 and P3:
C123 − C23 = $1, 000− $500 = $500

• P1 can join a coalition of P2:
C12 − C2 = $750− $500 = $250

• P1 can join a coalition of P3:
C13 − C3 = $750− $0 = $750

• P1 can join a coalition of no players:
C1 − C0 = $500− $0 = $500

B. P1’s Expected Marginal Contribution

To calculate the expected marginal contribution (Shapley
value) of P1, we need to determine the probability that P1
makes these respective marginal contributions.

To calculate the probability of the first marginal contribu-
tion, P (C123−C23), we need to determine the likelihood that
P1 makes a marginal contribution to a coalition of P2 and P3.

To start, we need to determine the number of ways a
coalition of three players can form (we use three players, since
this was the size of the team in the original scenario), assuming
players join sequentially with equal chance:

• P1 + P2 + P3
• P1 + P3 + P2
• P2 + P3 + P1
• P2 + P1 + P3
• P3 + P1 + P2

3C123 is the value of the coalition P1, P2, and P3.

• P3 + P2 + P1

P1 joins a coalition of P2 and P3 in 2 of the 6 scenarios,
so P (C123 − C23) = 2/3 = 1/3.

We then multiply the weighted probability (1/3) by the
marginal contribution (C123 − C23 = $500) and repeat this
process for the remaining marginal contributions we get:

• P (C123 − C23) · (C123 − C23) = 1/3 · $500
• P (C12 − C2) · (C12 − C2) = 1/6 · $250
• P (C13 − C3) · (C13 − C3) = 1/6 · $750
• P (C1 − C0) · (C1 − C0) = 1/3 · $500
When we sum all values, we calculate P1’s Shapley value

= $500.
In other words, P1 should receive $500 of the original

$1,000 prize money.
Following the same steps above, the expected marginal

contributions of P2 and P3 are $375 and $125, respectively.

IV. MATHEMATICAL PROPERTIES AND STRENGTHS

SHAP values are considered a “definition of a fair weight”
due to their mathematically desirable axioms [2], [6]:

• Efficiency. The sum of all feature contributions equals
the difference between the prediction and the model’s
average, ensuring Shapley values are fairly distributed
among features. For example, if the model predicts 60
and the average prediction is 50, the Shapley values sum
to 10.

• Symmetry. If two features contribute equally to all possi-
ble coalitions, their Shapley values are equal.

• Dummy. A feature that does not impact the predicted
value has a Shapley value of 0.

• Linearity. If two coalition games are combined, the
Shapley value for each feature is the sum of its values in
both games.

These properties ensure that SHAP is a fair and reliable
method for explaining model predictions.

Another key advantage of SHAP is its versatility. It can
explain any machine learning model, including enigmatic
black-box models, and provides local and global explanations
through plot visualization tools.

• Local explanations provide instance-specific explana-
tions [1]. For example, consider a model that predicts the
probability of a loan applicant defaulting based on factors
like annual income and credit score. A local explanation
lists the SHAP value for each feature, indicating how
it influenced the final prediction. Figure 4 displays the
global average prediction, E[f(x)] = 0.28, and shows
that a Monthly Debt of 12316 increased the probability
of this specific individual defaulting on their loan by 0.04.

• Global explanations average SHAP values across in-
stances to reveal features that generally exert the greatest
influence on predictions [1]. Figure 3 indicates Current
Loan Amount typically has the greatest influence on in-
dividual predictions. The information gained from global
analysis can be used to fine-tune the model and address
potential biases [2].
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Shapley value of i︷ ︸︸ ︷
ϕi(v) =

∑
S ⊆ N \ {i}︸ ︷︷ ︸

Sum of all subsets without i

Weighted probability︷ ︸︸ ︷
|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S))︸ ︷︷ ︸

Marginal contribution of player i to
coalition S

Fig. 2. Shapley value equation [4].

V. USE CASES

SHAP can interpret model output for numeric and non-
numeric data, such as text. The following examples illustrate
SHAP’s use cases based on a model’s training data:

• Tabular. Structured data organized in rows and columns,
typically stored in spreadsheets. Each row is an obser-
vation, and each column is a specific observation feature
(e.g., age, gender, income). Examples include census data
and medical records.

• Text. Unstructured natural language data, such as docu-
ments, articles, social media posts, or emails.

• Image. Image data, represented as pixel grids with height,
width, and color channels (e.g., RGB channels in a color
image). Examples include satellite and medical images.

• Genomic. Genetic data from organisms, typically a se-
quence of nucleotides (A, T, C, G in DNA) or other
biological features. Examples include DNA sequences
and gene expression data.

SHAP is compatible with any ML model, regardless of
training data.

VI. EXPLAINERS

SHAP is a model-agnostic and model-specific XAI tool,
as the SHAP library possesses several “explainers,” some
of which are model-specific and others model-agnostic (Fig-
ure 1). For example, the model-specific TreeExplainer
(known as TreeSHAP) is specifically designed for tree-based
ML models (e.g., RandomForest, XGBoost, LightGBM, Cat-
Boost). The model-agnostic KernelExplainer (known as
KernelSHAP) is compatible with any ML model. Other ex-
plainers include LinearSHAP, DeepSHAP, and GradientSHAP,
among others [11].

A. TreeSHAP

TreeSHAP is an explainer in the SHAP library specifically
for tree-based models such as RandomForest, XGBoost, Light-
GBM, and CatBoost. Like all SHAP explainers, TreeSHAP de-
termines the contribution of each input feature to the model’s
prediction. However, TreeSHAP is a unique explainer, as it
precisely calculates SHAP values, whereas all other explainers
approximate SHAP values through sampling methods [11].

Calculating SHAP values directly by testing all possible
pathways through every tree is computationally infeasible for
all but the smallest trees or datasets. However, the TreeSHAP
algorithm, defined in Algorithm 1, allows us to compute the
exact SHAP value in O(TLD2) time complexity and O(D2+
M) memory complexity [13], where

• T is the number of trees,
• L is the maximum number of leaves in any tree,
• M is the number of features, and
• D is the maximum depth of any tree.
Instead of explicitly listing and evaluating all possible 2M

feature subsets, TreeSHAP recursively tracks how the entire
collection of possible subsets would distribute themselves
down the specific prediction path, tracking the flow of subsets.

High-level summary. For example, imagine all possible fea-
ture combinations starting at the tree’s root. As the algorithm
traverses the path, dictated by the instance’s values, TreeSHAP
does not keep a list of which specific subsets go down each
branch but maintains path summary information.

This summary information includes details about the pro-
portions and aggregated weights of every possible subsets of
features, up to the total number of features involved in the path
so far. When the traversal ends at a leaf node, this information
is used to calculate each feature’s SHAP value.

Detailed walkthrough. Start at the root. The initial summary
information represents the state before any feature splits,
meaning all subsets are possible.

At each internal node along the path (including the root
node)

1) Decide how to split using the feature and threshold
information.

2) If the feature has not yet been encountered on the tree,
a) Update summary information to reflect the conse-

quences of this split by adjusting the proportion
of subsets that include versus exclude the splitting
feature, reflecting the number of instances now
“following” this decision path.

b) Update the aggregated weights associated with
different subset sizes.

3) If the feature has been encountered,
a) TreeSHAP performs a reversal procedure that tem-

porarily undoes the effect of the previous split
involving the same feature before updating the
tracking information. This ensures that the update
reflects the marginal impact of the current split
decision relative to the state immediately preceding
it. Without this reversal effect, TreeSHAP would
measure the impact of the feature’s second split
using data that reflects the influence of its first split,
confounding its marginal contribution rather than
isolating this lower-node decision.

b) After the reversal, update the summary informa-
tion.

Every leaf node stores a prediction value, representing the
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Algorithm 1 TreeSHAP [13]
procedure TS(x, tree = {v, a, b, t, r, d})

ϕ = array of len(x) zeros
procedure RECURSE(j,m, pz, po, pi)

m = EXTEND(m, pz, po, pi)
if vj ̸= internal then

for i← 2 to len(m) do
w = sum(UNWIND(m, i).w)
ϕmi

= ϕmi
+ w(mi.o−mi.z)vj

end for
else

h, c = xdj
≤ tj ? (aj , bj) : (bj , aj)

iz = io = 1
k = FINDFIRST(m.d, dj)
if k ̸= nothing then

iz, io = (mk.z,mk.o)
m = UNWIND(m, k)

end if
RECURSE(h,m, izrh/rj , io, dj)
RECURSE(c,m, izrc/rj , 0, dj)

end if
end procedure
procedure EXTEND(m, pz, po, pi)

l = len(m)
m = copy(m)
ml+1.(d, z, o, w) = (pi, pz, po, l = 0 ? 1 : 0)
for i← l − 1 to 1 do

mi+1.w = mi+1.w + pomi.w(i/l)
mi.w = pzmi.w[(l − i)/l]

end for
return m

end procedure
procedure UNWIND(m, i)

l = len(m)
n = mi.w
m = copy(m1...l−1)
for j ← i− 1 to 1 do

if mi.o ̸= 0 then
t = mj .w
mj .w = n · l/(j ·mi.o)
n = t−mj .w ·mi.z((l − j)/l)

else
mj .w = (mj .w · l)/(mi.z(l − j))

end if
end for
for j ← i to l − 1 do

mj .(d, z, o) = mj+1.(d, z, o)
end for
return m

end procedure
RECURSE(1, [ ], 1, 1, 0)
return ϕ

end procedure

model’s output for that decision path. When the model reaches
a leaf, the summary information reflects the cumulative effect
of all path splits.

To determine the SHAP value for each feature encountered
on the path, TreeSHAP uses the reversing procedure to re-
move each feature from the final summary state. The change
observed in the expected output value during each removal
reveals the feature’s contribution (SHAP value).

For models composed of multiple trees, the process above is
performed independently for each tree in the ensemble, using
the same input features. A feature’s SHAP value is calculated
by adding its SHAP value from all trees.

VII. VISUALIZATION METHODS

After selecting an appropriate explainer for a model’s archi-
tecture, SHAP has several plots for visualizing the calculated
SHAP values. Each tool provides unique data insights. Below
are a few examples [11]:

• Bar plot. Displays each feature’s global average SHAP
value, representing its average contribution to the target
variable (Figure 3). Features are ranked by influence,
from most to least. Variations include local bar plot and
cohort bar plot.

• Waterfall plot. Displays the vector SHAP value for each
feature in a local prediction, illustrating each feature’s
contribution (Figure 4). The waterfall structure reveals
the additive nature of positive and negative contributors
from the model’s base value (global average prediction)
to the local prediction, building from the bottom up. The
most important feature is listed first.

• Heatmap. Displays a plot with all instances on the x-axis,
features on the y-axis, and SHAP values encoded on a
color scale. Darker colors represent greater SHAP effects.
Figure 5 illustrates the SHAP values for a model trained
to predict whether individuals in the 1990s earned more
than $50, 000 per year. The black bar chart to the right
depicts each feature’s global mean SHAP value, while the
f(x) line represents the predicted value for the specific
instance.

• Beeswarm plot. Displays the distribution of SHAP values
for each feature across all instances in the data set
(Figure 6). Where SHAP values are dense, points are
stacked vertically. The x-axis represents the SHAP value,
indicating the importance of each feature in determining
the prediction. The point’s color represents the feature’s
value (red is high, blue is low). A red dot increases the
prediction value, whereas a blue dot decreases.

VIII. LIMITATIONS

Shapley values in their original form suffer from expo-
nentially increasing computational complexity as the number
of features grows [1]. However, implementations of SHAP
estimate Shapley values using fewer computational resources
using sampling techniques.

A 2023 paper, The Inadequacy of Shapley Values for
Explainability [9], argues that Shapley values can provide
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Fig. 3. A SHAP bar plot [15]. Displays each feature’s global average SHAP
value, representing its average contribution to the target variable. Features are
ranked by influence, from most to least.

Fig. 4. A SHAP waterfall plot [15]. Displays the vector SHAP value for
each feature in a local prediction, illustrating each feature’s contribution.
The waterfall structure reveals the additive nature of positive and negative
contributors from the model’s base value (global average prediction) to the
local prediction, building from the bottom up. The most important feature is
listed first.

Fig. 5. A SHAP heatmap plot [11]. Displays a plot with all instances on the x-
axis, features on the y-axis, and SHAP values encoded on a color scale. Darker
colors represent greater SHAP effects. This chart depicts the SHAP values
for a model trained to predict whether individuals in the 1990s earned more
than $50, 000 per year. The black bar chart to the right depicts each feature’s
global mean SHAP value, while the f(x) line represents the predicted value
for the specific instance.

Fig. 6. A SHAP beeswarm plot [11]. Displays the distribution of SHAP
values for each feature across all instances in the dataset. Where SHAP values
are dense, points are stacked vertically. The x-axis represents the SHAP value,
indicating the importance of each feature in determining the prediction. The
point’s color represents the feature’s value (red is high, blue is low). A red
dot increases the prediction value, whereas a blue dot decreases.

misleading results even though Shapley values are theoretically
grounded in game theory.

Using proofs and experimental data, the authors demonstrate
that Shapley values can yield provably misleading information
about the relative importance of features.

The paper identifies key issues with using Shapley values
for feature importance:

• Irrelevant features can have a non-zero importance.
• Irrelevant features can be ranked higher than relevant

ones.
• Relevant features can have zero importance.
How are Shapley values misleading despite satisfying math-

ematical fairness axioms? While the paper agrees that Shapley
values satisfy the efficiency, symmetry, dummy, and linearity
axioms, it argues that these axioms do not translate into a
reliable measure of feature relevance. Why? Because there is
a difference between mathematical impact (used by Shapley
values) and logical relevance. The mathematical properties
guaranteed by Shapley value axioms do not guarantee logical
relevance [9].

A. Logical Relevance

Logical relevancy is defined using Abductive Explanations
(AXp). An AXp represents a minimal (irreducible) set of fea-
tures whose values, if fixed according to the specific instance
explained, are sufficient to guarantee the model’s prediction
outcome [9].

• A feature is logically relevant for a prediction if included
in at least one AXp for that prediction.

• If a feature is not part of any AXp, it is logically
irrelevant.

Let’s use an analogy to clarify this concept: Imagine baking
a Granny Smith apple pie. There might be several ways to
bake this pie using the absolute minimum essential ingredients.
One minimal recipe requires flour, butter, water, Granny Smith
apples, sugar, and cinnamon. Another minimal recipe uses pre-
made pie crust, Granny Smith apples, sugar, and cinnamon.
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• An ingredient is “logically relevant” if it appears on at
least one essential ingredient list. In this case, Granny
Smith apples, sugar, cinnamon, flour, butter, water, and
pre-made pie crust are all logically relevant because
they’re needed for at least one minimal recipe.

• An ingredient is “logically irrelevant” if it does not
appear in any minimal recipe. For example, “a scoop of
ice cream” or “confectioner’s sugar” is not a minimum
ingredient required to bake the pie.

Logical relevancy for the Granny Smith pie (the model’s
specific prediction) means identifying ingredients (features)
that are absolutely necessary in at least one “bare-bones”
recipe (the minimal sets, or AXps) to make that specific pie.

B. Mathematical Impact

Shapley values measure the average marginal contribution
of a feature across all possible coalitions. Because the final
Shapley value for a feature is an average of its contribution in
many different coalition contexts, the specific contribution in
one particular context can be eliminated through the averaging
process. For example,

• A feature might be crucial in one minimal set, but if its
contribution is zero or negative in many other coalitions,
its Shapley value could be zero.

• Conversely, a feature might never be part of any minimal
set (logically irrelevant), but has a small positive or
negative contribution when added to various non-minimal
coalitions. If these small contributions don’t average
to zero, the feature is incorrectly assigned a non-zero
Shapley value.

These examples illustrate how the logical relevancy of a
feature can diverge from the averaged contribution measured
by its Shapley value for a specific instance.

C. SHAP Alternatives

The authors briefly introduce an alternative measure of
feature importance: enumerate all the AXp’s of an explanation
problem, and rank the features by their occurrence in expla-
nations, giving more weight to the smaller explanations. Such
a measure ensures irrelevant features’ score is 0. However,
enumerating all AXp is generally exponentially complex,
making it computationally infeasible for large problems [9].

D. Conclusion

In summary, Shapley values can be misleading because
mathematical impact does not guarantee logical relevance.
Despite satisfying fairness axioms, Shapley values may assign
non-zero importance to irrelevant features or overlook relevant
ones, as defined by AXp. These limitations demand caution if
relying on Shapley values for model interpretability.

IX. EXPLORATIONS

For my Explorations project, I trained an XGBoost model
on the CS150 Titanic dataset to predict individual survival
probabilities.

Fig. 7. Percentage of Titanic survivors by gender, generated during the
CS150 Titanic lab. Female passengers had a substantially higher survival
rate (approximately 75%) compared to male passengers (around 19%). This
disparity reflects the influence of gender-based evacuation priorities during
the disaster, such as the “women and children first” protocol. Created by the
author.

Fig. 8. Percentage of Titanic survivors by passenger class, generated during
the CS150 Titanic lab. Survival rates decreased with lower passenger class:
first-class passengers had the highest survival rate (approximately 64%),
followed by second-class (about 47%), and third-class passengers had the
lowest survival rate (around 25%). This trend underscores the role of socio-
economic status in survival likelihood during the disaster. Created by the
author.

Fig. 9. Percentage of Titanic survivors organized by gender and passenger
class, generated during the CS150 Titanic lab. Female passengers had signifi-
cantly higher survival rates than male passengers across all classes. First-class
females had the highest survival rate (approximately 95%), while third-class
males had the lowest (under 20%). This distribution highlights the impact of
both gender and socio-economic status on survival outcomes. Created by the
author.
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The dataset contains 887 passenger entries, each with fea-
tures such as:

• Class (First, Second, or Third)
• Sex (Male or Female)
• Name (String)
• Age (Float)
• Fare Paid (Float)
• Survived (Boolean)

In the CS150 Titanic lab, we learned that female passengers
had the highest survival rates (Figure 7), and first-class pas-
sengers were most likely to survive, followed by second- and
third-class passengers (Figure 8). Across all classes, women
consistently had higher survival rates than men (Figure 9).

These findings suggested that sex was the strongest pre-
dictor of survival, with class as the second most influential
feature.

To test whether SHAP would confirm these insights, I
replicated a tutorial from the SHAP documentation titled,
“Census income classification with XGBoost,” [10] in a
Jupyter notebook. After resolving a few bugs, I adapted the
code for the Titanic dataset.

SHAP confirmed that sex was the most important predictor
of survival rate, followed by class, age, and fare (Figure 10).
All generated SHAP plots, including beeswarm, waterfall,
heatmap, and scatter plots, agreed with our lab findings.

However, one plot revealed a previously hidden data insight
(Figure 11). Using color encoding (females in blue, males
in red), the plot showed that a passenger’s first-class status
significantly increased survival probabilities for both genders,
but the effect was stronger for women. This trend continued for
second-class passengers. However, for third-class passengers,
the negative impact of class was more detrimental for women
than men.

I confirmed this disparity using two waterfall plots: one
showing a third-class female whose survival probability
dropped sharply due to class (Figure 12), and another showing
a second-class female whose class improved her survival
chances (Figure 13). These results suggest a disproportionate
survival disparity for third-class women.

Overall, my Explorations project revealed

• The model’s SHAP values agreed with my CS150 anal-
ysis,

• The SHAP plot revealed invisible data insights, and
• If a model is well-trained and accurately represents the

data, SHAP functions as a data analysis tool.

X. FUTURE TRENDS

A. Introduction

In the next six months to a year, the use of XAI tools like
SHAP will continue to grow, driven by increasing regulations
and the demand for model accountability. However, XAI is
shifting from relying on external, post-hoc explanation tools,
like SHAP, to the emergence of built-in model explainability
mechanisms.

Fig. 10. A SHAP bar plot from the CS150 Titanic dataset. The plot
displays each feature’s global average SHAP value, representing its average
contribution to the target variable. Features are ranked by influence, from
most to least. SHAP reveals sex is the most important feature for predicting
survival rate, followed by class, age, and fair paid. Created by the author.

Fig. 11. SHAP scatter plot showing the impact of passenger class on survival
predictions, stratified by sex. Each dot represents an individual from the
Titanic dataset, with SHAP values for class plotted on the y-axis and passenger
class on the x-axis. Females are encoded in blue, males in red. The plot reveals
that first- and second-class passengers generally had an increased survival rate
due to their class, and this is particularly true for women. However, for third-
class passengers, their third-class status decreased their survival probability,
with third-class women disproportionately affected compared to third-class
men. Created by the author.

Fig. 12. A SHAP waterfall plot for a third-class female in the Titanic dataset.
This plot reveals how third-class passenger status negatively influenced this
female’s survival rate, demonstrating a disproportionate disadvantage for third-
class women compared to second- and first-class women. Created by the
author.
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Fig. 13. A SHAP waterfall plot for a second-class female in the Titanic
dataset. This plot reveals how second-class passenger status positively influ-
enced this female’s survival rate, demonstrating a disproportionate advantage
for second-class women compared to third-class women. Created by the
author.

B. Increased Regulation

As AI tools are increasingly used in healthcare and finance
sectors, the use of XAI tools like SHAP is likely to increase
due to heightened regulations and desire for AI transparency.
Legislative frameworks such as the EU AI Act and the General
Data Protection Regulation (GDPR) are mandating transparent
justifications for AI output, especially in high-stakes domains
such as finance, healthcare, and criminal justice.

For example, the EU AI Act states,
High-risk AI systems shall be designed and devel-
oped in such a way as to ensure that their operation is
sufficiently transparent to enable deployers to inter-
pret a system’s output and use it appropriately [16].

Additionally, in Article 15(1)(h) and Recital 71 of the GDPR
states,

The data subject shall have the right to obtain
from the controller confirmation as to whether or
not personal data concerning him or her are being
processed, and, where that is the case, access to the
personal data and the following information: [...] the
existence of automated decision-making, including
profiling, referred to in Article 22(1) and (4) and, at
least in those cases, meaningful information about
the logic involved, as well as the significance and
the envisaged consequences of such processing for
the data subject [7].

Failure for AI companies to meet these requirements could
result in legal penalties or customer distrust. While there are
multiple XAI tools on the market, SHAP, given its model-
agnostic nature, emerges as a practical tool to meet compliance
needs. Companies and organizations can use SHAP to produce
individualized and audit-ready explanations for decisions such
as loan denials or medical diagnoses. This regulatory demand
indicates a strong growth momentum for SHAP and XAI tools.

C. Shift to Integrated XAI

Major ML platforms are starting to embed explainabil-
ity directly into their modeling pipelines. Google’s What-If
Tool [8] and Microsoft’s Responsible AI dashboard [14] in-
creasingly offer built-in feature attribution mechanisms along-
side standard training processes, reducing reliance on external
interpretability libraries. As this integration becomes more

seamless and computationally efficient, users may prefer native
explainability features that do not require extensive post-
processing. Given that SHAP is an open-source Python library,
SHAP may be become embedded in AI models, increasing its
use over time.

In conclusion, the future of XAI will likely be characterized
by dual momentum: sustained growth of tools like SHAP
fueled by regulation, fairness concerns, and the demand for
transparency, alongside a gradual migration toward built-in
model explainability. SHAP’s use will continue to grow to sat-
isfy regulation requirements and may integrate with models for
built-in explainability. This convergence would shape a future
where interpretability is not merely a compliance checkbox,
but a foundational property of trustworthy AI.

XI. CONCLUSION

SHAP, a model-agnostic XAI framework rooted in Shapley
values from coalitional game theory, provides a mathematical
approach to interpreting machine learning predictions. SHAP’s
ability to generate global and local explanations makes it a
useful tool for model transparency, especially in high-stakes
domains like finance and healthcare. Through a hands-on
exploration using TreeSHAP on Titanic passenger data, SHAP
accurately measured feature relevance, confirming prior in-
sights while exposing nuanced patterns, such as the dispropor-
tionate disadvantage faced by third-class female passengers.

These results highlight SHAP’s strength as an interpretabil-
ity mechanism and a data analysis tool capable of uncovering
previously unseen patterns. However, we must understand
SHAP’s potential limitations. While SHAP satisfies several
fairness axioms (efficiency, symmetry, dummy, and linearity),
these mathematical guarantees do not satisfy logical relevance
requirements. Features can be assigned non-zero SHAP values
when logically irrelevant, particularly when averaged across
coalitions with varied feature interactions. This discrepancy
between mathematical impact and logical necessity demands
further investigation.

Given the increasing regulatory emphasis on explainable
AI, illustrated by the EU AI Act and GDPR, tools like
SHAP will be used to satisfy compliance regulations. How-
ever, practitioners must apply SHAP cautiously, recognizing
that it offers one perspective among many. In high-stakes
settings, complementing SHAP with domain expertise, user-
centered validation, and alternative XAI techniques ensures
interpretations are technically sound and reflect data trends.
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APPENDIX

To complete my SHAP capstone project, I did not rely
on direct knowledge from previous coursework. I have not
taken natural language processing or machine learning, which
would have introduced key vocabulary and foundational XAI
concepts. Instead, I researched the basics of machine learning
necessary to understand XAI and SHAP.

However, the “soft skills” I developed through previous
experiences, like problem-solving and learning to navigate
uncertainty, were valuable. For my CS200 final project, for
example, I tackled an ambitious, solo project that required
working ahead and independent research to complete on time
as I learned new tools and concepts beyond the class material
to build a user interface.

During my summer research with Dr. Imad, my team of
four pursued a self-directed project building a virtual TA for
CS150 students. With minimal guidance, we had to determine
the project direction, troubleshoot independently, and adapt.
This experience taught me to thrive without clear instructions
or guaranteed answers.

During my internship at Securian Financial, I chose to join
a high-priority team project full of unknowns over a more
defined, lower-priority one. I had to quickly learn new de-
velopment tools, processes, and programming languages. This
experience broadened my technical perspective and strength-
ened my adaptability, skills I brought to capstone.

This project, above all else, deepened my confidence in self-
directed learning. It taught me that I can independently learn
complex topics through research; I just need to put in the time!
Capstone’s unstructured nature was initially uncomfortable,
but I quickly learned to be my own advocate, and again, be
comfortable with not knowing everything and not having a
clear road map to my final project.

Headed into my full-time job as a software engineer at
Federated Insurance, I will face several unknowns and need
to feel “comfortable being uncomfortable” to succeed in my
new environment. I am confident that this project has helped
improve my research abilities (which is critical given the
notion of a “CS knowledge half-life”) and soft skills of time
management and open-mindedness.

Thank you for a great semester! :)
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