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Comparative Analysis of Hybrid Quantum Neural
Networks: Efficiency, Accuracy, and Applications

Andrew Nerud

Abstract—Hybrid Quantum Neural Networks (HQNNs) inte-
grate quantum computing with classical deep learning to improve
efficiency, expressivity, and performance in high-dimensional
learning tasks. While they offer theoretical advantages through
quantum-enhanced feature representations and variational quan-
tum circuits, real-world deployment remains challenging due
to quantum noise, short coherence times, and hybrid process-
ing overhead. This paper evaluates the practical viability of
HQNNs by systematically reviewing comparative studies across
domains such as medical imaging, quantum chemistry, and
natural language processing. Using metrics like training time,
parameter count, and floating-point operations (FLOPs), we find
that HQNNs can achieve up to 50% fewer parameters, a 30%
reduction in FLOPs, and faster convergence—while maintaining
or exceeding classical model accuracy. However, these benefits
are often offset by quantum-classical bottlenecks and training
instabilities such as barren plateaus. Our analysis highlights
the need for more robust error mitigation strategies, scalable
quantum hardware, and standardized benchmarking protocols.
While not yet viable replacements, HQNNs are a transitional step
toward fully quantum machine learning systems, particularly in
domains requiring low-resource, high-efficiency inference.
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I. INTRODUCTION

In 2023, researchers at MIT demonstrated that HQNNs
could classify medical images with 98.7% accuracy while
using 30% fewer parameters than traditional CNNs [1]. This
breakthrough highlights the potential of quantum-assisted deep
learning to improve model efficiency while maintaining high
accuracy.

HQNNs use superposition and entanglement to enhance
feature extraction and reduce computational overhead. This
paper reviews HQNN performance relative to classical models.
We systematically review existing findings regarding:

• The computational efficiency of HQNNs versus classical
neural networks.

• The impact of quantum feature representations on training
performance.

• The practical limitations and challenges observed in ex-
perimental HQNN studies.

Beyond technical performance, HQNNs raise important
implications in industry, ethics, and long-term viability. As
quantum computing gradually shifts from academic novelty
to industrial investment, HQNNs are emerging as candidates
for practical AI in sectors like healthcare [2], [3], cyber-
security [4], materials science [5], [6], and environmental
modeling [7]. These systems offer faster inference and lower
complexity but raise equity, explainability, and access concern.

For example, privacy-aware HQNNs have been proposed
for biometric tasks such as lipreading, where classical DNNs
pose risks to user anonymity [8]. Meanwhile, HQNN-
based pipelines are already outperforming classical models
in resource-constrained tasks like corrosion inhibitor discov-
ery [6] and battery health estimation [9], suggesting real-world
feasibility even under current quantum hardware limitations.
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Given this momentum, an important question arises: Can
HQNNs scale into reliable, general-purpose AI tools be-
yond academic benchmarks? And if so, how should the
computer science community prepare for their broader inte-
gration?

This paper examines the feasibility and limitations of
HQNNs by systematically reviewing their computational ef-
ficiency, training dynamics, and real-world applications. It
also expands upon the social and ethical framing of this
technology, drawing from recent advancements and ongoing
debates. To support this analysis, the following section first
provides a foundational overview of quantum mechanics and
its intersection with machine learning.

II. BACKGROUND AND THEORETICAL FOUNDATIONS

A. Quantum Computing and Machine Learning

Quantum computing uses quantum mechanics to perform
computations beyond classical systems [10]. Unlike classical
bits constrained to binary states (0 or 1), quantum bits (qubits)
exist in a superposition of both states, enabling exponential
computational advantages in specific domains [11].

The qubit, as the fundamental unit of quantum information,
is mathematically represented as:

|ψ⟩ = α|0⟩+ β|1⟩, where α, β ∈ C, |α|2 + |β|2 = 1 (1)

Here, α and β are complex probability amplitudes, and their
squared magnitudes sum to 1. This normalization ensures that
a measurement will always collapse the qubit into a definite
state of |0⟩ or |1⟩. Multi-qubit states are expressed as tensor
products of individual qubits, which enables the encoding of
quantum correlations [10], [12]. The key quantum properties
and definitions relevant to computing will be covered in the
following sections.

Key Quantum Terms: A Practical Glossary

To improve clarity, we define essential terms relevant to
HQNNs:

• Qubit: A quantum bit that can exist in a superposition of
0 and 1, enabling parallel information processing [10].

• Superposition: A quantum property allowing simultane-
ous existence in multiple states, giving rise to computa-
tional parallelism [13].

• Entanglement: A phenomenon where two or more qubits
are interdependent; a change in one affects the state of the
other. This is critical for learning feature correlations [10].

• Quantum Gate: A transformation applied to a qubit,
analogous to classical logic gates. Gates like Hadamard
and CNOT manipulate quantum states during computa-
tion [12].

• Variational Quantum Circuit (VQC): A parameterized
quantum model trained via optimization, serving as the
core quantum layer in HQNNs [14].

• Hilbert Space: A high-dimensional vector space where
quantum states live. Feature encodings into Hilbert space
enable HQNNs to capture complex data patterns [15].

• Quantum Kernel: A similarity measure computed in
quantum feature space. Used in tasks like classification
with quantum-enhanced SVMs [12].

• Measurement: The act of collapsing a quantum state
into classical information. This step is probabilistic and
introduces latency in hybrid systems [16].

1) Entanglement: Entanglement is a quantum phenomenon
that links qubits such that measuring one immediately deter-
mines the other’s state [10], [13]. This correlation is indepen-
dent of distance, enabling non-local information encoding and
efficient representation of feature dependencies in HQNNs.

A two-qubit entangled state, known as a Bell state, is
represented as:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) (2)

This state forms the theoretical basis for quantum telepor-
tation, quantum key distribution, and improved expressivity in
variational quantum circuits.

2) Hadamard Gate: The Hadamard gate (H) is a foun-
dational single-qubit gate that places a qubit into an equal
superposition of states. It is often used at the beginning of
quantum algorithms to initiate parallel exploration of solution
spaces.

Mathematically, it is defined as:

H =
1√
2

[
1 1
1 −1

]
(3)

Applied to the initial basis state |0⟩, it produces:

H|0⟩ = 1√
2
(|0⟩+ |1⟩), (4)

which encodes both computational paths simultaneously for
later quantum operations.

3) Controlled-NOT gate: The Controlled-NOT (CNOT)
gate is a two-qubit quantum operation that flips the target qubit
if the control qubit is in the |1⟩ state. It is a key component
in generating entangled states within quantum circuits.

Its matrix form is:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (5)

When applied to a superposed input state:

CNOT

(
1√
2
(|00⟩+ |10⟩)

)
=

1√
2
(|00⟩+ |11⟩), (6)

it produces the Bell state from Equation (2), thus entangling
the two qubits.

Quantum Machine Learning (QML) explores how quantum
computing can accelerate machine learning tasks, such as
classification, clustering, and generative modeling [13].
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B. Introduction to HQNNs

HQNNs integrate quantum computing layers within classi-
cal deep learning models, aiming to enhance computational
efficiency while leveraging quantum properties [12], [17].
These models use variational quantum circuits (VQCs) that
leverage entanglement and superposition for feature extraction.

As shown in Figure 1, HQNNs leverage an N-qubit
variational circuit where each qubit undergoes Hadamard
transformations (H), controlled interactions, and parameterized
rotation gates (Ry(θ)) [18]. This setup enables feature repre-
sentations beyond classical models, improving pattern recog-
nition. VQCs are typically trained using hybrid optimization
methods, where classical optimizers adjust the quantum gate
parameters (θ) based on loss minimization techniques [14].

|0⟩ H • Ry(θ1)

|0⟩ H • Ry(θ2)

|0⟩ H • Ry(θ3)
...

...
...

|0⟩ H Ry(θn)

Fig. 1. One of the various forms of a N-qubit VQCs used in HQNNs. Each
qubit begins in |0⟩ and undergoes Hadamard gates, controlled operations, and
Ry(θ) rotations. Adapted from [14], [15], [16], [18], [19].

HQNN Architecture Overview:
• A classical neural network is used for feature extraction

and data preprocessing.
• A quantum layer (often implemented using VQCs) re-

places one or more classical layers [14].
• The quantum circuit is parameterized and trained using

gradient-based optimization, similar to classical deep
learning models [20].

Input CNN

Quantum
Variational

Circuit Output

Fig. 2. General architecture of a HQNN. The model integrates classical
convolutional layers with a quantum variational circuit before producing the
final output [1], [21], [22].

HQNNs follow a hybrid structure where:
• A classical neural network is used for initial feature

extraction and preprocessing.
• A quantum variational circuit replaces certain layers

within the model, leveraging quantum gates to process
data [15].

• Optimization is performed through hybrid training
methods, combining classical gradient-based techniques
with quantum variational parameter tuning [12].

Figure 2 provides an overview of a typical HQNN archi-
tecture, where a convolutional neural network (CNN) extracts
features before processing them through a quantum variational
circuit. This hybrid approach enables improved feature trans-
formations while maintaining classical efficiency.

C. Quantum Feature Representations in HQNNs

Recent research shows quantum encodings can outperform
classical embeddings in high-dimensional tasks with redun-
dancy or sparsity, which often pose challenges to conventional
deep learning approaches [23]. Quantum feature represen-
tations efficiently encode high-dimensional data, reducing
computation and overfitting.

Other recent experimental studies have demonstrated the
practical applications of HQNNs in real-world scenarios. For
instance, research on handwritten digit recognition has
shown that HQNNs can achieve comparable accuracy to classi-
cal convolutional neural networks (CNNs) while requiring sub-
stantially fewer trainable parameters, thereby reducing compu-
tational complexity [24]. Similarly, in the domain of quantum
chemistry, HQNN-based approaches have been employed to
predict the ground state energy of molecular systems with
improved precision over classical machine learning models
[15]. By directly encoding quantum states into the network,
HQNNs offer a fundamental advantage in processing quantum
mechanical data, making them well-suited for applications in
materials science and molecular modeling.

Despite these advantages, the effectiveness of HQNNs is
contingent on the efficient design of VQCs, which serve as
the backbone of quantum feature extraction. Future research
should explore optimal architectures for integrating VQCs
within hybrid quantum-classical frameworks, ensuring that
feature extraction remains both computationally feasible and
robust to quantum noise. Additionally, empirical comparisons
between quantum and classical feature representations could
further illuminate the contexts in which HQNNs provide the
most substantial performance gains.

This section establishes the necessary theoretical back-
ground to evaluate HQNNs’ computational efficiency. While
quantum computing provides unique computational advan-
tages, its integration within neural networks presents several
challenges that influence model performance. To assess how
these challenges manifest in real-world applications, the next
section reviews previous research methodologies, focusing on
dataset selection, benchmarking techniques, and the experi-
mental constraints imposed by current quantum hardware.

D. Summary of Theoretical Foundations

This section established the essential concepts needed to
understand the hybrid quantum-classical approach used in
HQNNs. Quantum properties like superposition, entanglement,
and variational circuits enable novel approaches to feature
extraction and model compression. While classical deep learn-
ing has matured through extensive optimization and hardware
support, quantum neural networks offer a fundamentally new
direction that promises increased efficiency — albeit with new
challenges in implementation and hardware readiness.
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The next section will explore how these foundational ideas
have been applied in experimental studies, with emphasis on
dataset selection, benchmarking, and hardware constraints.

III. SUMMARY OF PREVIOUS RESEARCH METHODS

To evaluate HQNNs, researchers have applied a variety of
experimental methodologies across diverse domains, ranging
from image recognition to molecular modeling. Key factors
that influence evaluation include dataset selection, bench-
marking standards, simulation environments, and quantum
hardware constraints.

A. Datasets and Benchmarking Standards

Benchmarking HQNNs often begins with classical datasets,
as they provide a point of comparison against well-optimized
deep learning models. The most commonly used datasets
include:

• MNIST: Widely used for binary and multiclass digit
classification [18], [24].

• COVID-19 Chest X-rays: Used to test HQNN per-
formance in medical diagnostics with small, high-
dimensional inputs [1].

• Molecular Energy Datasets: Applied in quantum chem-
istry, evaluating energy prediction for molecular ground
states [15].

• Environmental and Materials Data: Recent studies
have extended HQNN evaluation to lithium battery
health [9] and ozone forecasting [7].

These datasets reflect both structured and unstructured input
formats. More recent pipelines employ data fusion [9], data
augmentation [2], and hybrid quantum-classical feature engi-
neering [6], signaling increased methodological sophistication.

B. Performance Evaluation Metrics

To compare HQNNs with classical deep learning models,
studies rely on standardized metrics:

• Training Time: Measures convergence speed. HQNNs
often require fewer epochs due to quantum-enhanced
expressivity [24].

• Floating-Point Operations (FLOPs): Tracks computa-
tional cost. HQNNs generally show reduced FLOPs due
to logarithmic scaling of quantum circuits [12].

• Parameter Count: A lower number of tunable parame-
ters often reduces overfitting and training cost. HQNNs
are known to match classical accuracy with significantly
fewer parameters [19].

• Inference Latency: Though less frequently reported,
latency is a concern when quantum measurements are
slow [18].

However, these metrics must be contextualized. For in-
stance, quantum measurements are probabilistic and introduce
variance not captured by FLOPs or parameters alone. As
such, several studies have called for more robust evaluation
protocols, especially when using hardware backends.

C. Quantum Hardware vs. Simulation

Most HQNN experiments to date are conducted using
quantum simulators such as Qiskit Aer, PennyLane, or Ten-
sorFlow Quantum [14]. These environments model idealized
qubits and do not capture the decoherence, noise, or gate errors
present on real quantum hardware.

When HQNNs are executed on actual QPUs (e.g., IBM Q,
Rigetti), researchers observe notable deviations from simula-
tion results. Accuracy often drops due to quantum gate noise
and the short coherence times of current qubit technologies,
which limit circuit depth and consistency. Execution time also
increases significantly, primarily because of quantum-classical
communication delays introduced during iterative training and
measurement. Moreover, to achieve stable gradient estimates
during training, researchers frequently resort to batching or
repeated quantum sampling, which further increases runtime
and hardware demand.

Some newer studies have addressed these limitations by
incorporating error mitigation strategies directly into the train-
ing pipeline [25]. For instance, VQCs are now being adjusted
using hardware-aware optimizers that account for gate noise.
Additionally, certain tasks—such as lipreading and biometric
detection—have benefited from integrating differential privacy
layers, which also improve noise robustness during quantum
inference [8]. These developments mark a shift toward more
hardware-conscious HQNN modeling practices.

D. Evolution of HQNN Methodologies

As shown in Figure 3, HQNN evaluation techniques have
matured across three major stages. Early studies emphasized
proof-of-concept goals, using shallow circuits on synthetic
or low-complexity datasets. These efforts demonstrated ba-
sic viability but lacked real-world applicability. In the next
stage, researchers introduced standardized benchmarks such
as MNIST and molecular property prediction, often leverag-
ing simulated quantum backends to explore scalability and
hybrid training schemes. More recently, HQNNs have been
deployed in applied domains including medical imaging, envi-
ronmental forecasting, and materials modeling. These modern
approaches increasingly involve both simulator and real-QPU
pipelines [2], [5], [6], reflecting a shift toward full-stack
experimentation and deployment-oriented design.

This progression highlights growing confidence in HQNN
pipelines and an increasing emphasis on reproducibility and
interpretability. Many of the most recent frameworks have
adopted more advanced training techniques, including quan-
tum transfer learning [20], hybrid generative adversarial net-
works (GANs), and decision trees augmented with quantum
feature spaces [24]. These directions indicate that HQNNs are
becoming more modular and adaptable to a broader range of
machine learning problems.

E. Summary

Previous research has demonstrated that HQNNs can re-
duce parameter count and computational complexity while
maintaining competitive accuracy. However, results obtained
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Early HQNNs (2018–2020)
Toy datasets, shallow circuits

Benchmark Stage (2020–2023)
MNIST, molecule simulations

Modern HQNNs (2023–2025)
Real-world data, QPU-aware methods

Fig. 3. Evolution of HQNN research methodology from early toy prob-
lems [12] to benchmarked tasks [15], [24], and recent real-world pipelines [2],
[5].

from simulations may not fully translate to hardware im-
plementations. To move forward, future benchmarking must
incorporate more standardized evaluation pipelines. In par-
ticular, benchmarking frameworks should include pre-defined
HQNN model templates, common datasets, and reproducible
quantum-classical integration routines. Equally important is
the transparent reporting of performance on simulated versus
real quantum hardware, as well as application-specific datasets
that can stress-test HQNNs under realistic deployment scenar-
ios.

IV. FINDINGS FROM PREVIOUS RESEARCH

A. HQNNs vs. Classical Neural Networks

Comparative studies between HQNNs and classical deep
learning models have produced promising, yet nuanced, re-
sults. HQNNs often demonstrate computational advantages
through quantum-enhanced feature representations, though
these benefits are highly dependent on dataset complexity,
circuit depth, and integration strategies [24].

Parameter Efficiency and FLOP Reduction. One of the
most consistent findings is that HQNNs require significantly
fewer parameters than classical models while maintaining
similar accuracy. Studies report reductions of up to 40–50%
in trainable parameters, particularly in image classification
and chemistry-based models [15]. In addition, HQNNs demon-
strate a 30% reduction in FLOPs (floating-point operations)
due to the linear algebraic efficiency of quantum circuits [12].
These reductions correlate with lower memory usage, shorter
training times, and decreased risk of overfitting in small-data
regimes.

Faster Convergence and Generalization. HQNNs also
tend to converge more quickly, especially in high-dimensional
feature spaces. Some studies observe a 20–35% speedup in
training convergence compared to classical CNNs [18]. This
acceleration is often attributed to the expressive capacity of
quantum feature mappings, which encode inputs into high-
dimensional Hilbert spaces using unitary transformations. For
example, a quantum embedding function Φ(x) maps classical
input x to a quantum state:

|ψ(x)⟩ = U(x)|0⟩⊗n, (7)

where U(x) is a parameterized quantum circuit. This map-
ping enables HQNNs to capture correlations and dependen-
cies that classical networks may miss, while simultaneously
regularizing model complexity through entanglement and in-
terference effects [16].

Overfitting Resistance and Noise Regularization. Several
HQNN implementations demonstrate improved performance
on small datasets, including in domains like medical imag-
ing and disease prediction [1]. These results suggest that
HQNNs offer a form of implicit regularization, reducing the
tendency to overfit by leveraging probabilistic measurement
and entanglement-based constraints during training.

Remaining Limitations. Despite these benefits, HQNNs
are still limited by their hybrid architecture. The quantum-
to-classical interface introduces overhead, particularly due to
measurement and communication delays between quantum
processors and classical optimizers [18]. These bottlenecks can
offset the gains in training speed and parameter efficiency un-
less specialized hardware or batching strategies are employed.

Overall, the comparison suggests that HQNNs hold clear
advantages in settings where data is sparse, feature spaces
are complex, and parameter budgets are tight. Their benefits
diminish, however, in large-scale tasks where classical mod-
els can exploit parallel hardware and massive datasets more
effectively.

Tables I & II provide quantitative comparisons of HQNNs
and classical models across various datasets. In particular,
HQNNs demonstrated a 29% reduction in training time
compared to CNNs in the MNIST dataset, while achiev-
ing an accuracy of 98.7%, slightly surpassing its classical
counterpart [24]. Similarly, in medical imaging applications,
HQNNs achieved a significant FLOP reduction (from 4.2
billion to 2.5 billion), which underlines their computational
efficiency [1].

Figure 4 provides a normalized bar chart view of key
performance metrics on benchmark datasets, complementing
the raw values presented in Table I.

B. Application-Specific Findings

HQNNs have been explored in multiple domains, including
computer vision, quantum chemistry, and natural language
processing (NLP). Recent studies have benchmarked HQNN
performance across these applications, revealing both advan-
tages and limitations.

1) Medical Imaging and Disease Prediction: One of the
most promising applications of HQNNs is in medical imag-
ing, where quantum feature mapping has shown improvements
in early disease detection. A study using COVID-19 X-ray
classification [1] found that an HQNN model achieved:

• 96.8% accuracy, outperforming classical CNNs by
2.1%.

• 35% fewer parameters, reducing model complexity
without sacrificing performance.

• 28% reduction in training time, indicating improved
efficiency in quantum feature encoding.
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Fig. 4. Comparison of HQNN and Classical CNN performance across key
computational efficiency metrics, adapted from [24]. HQNNs demonstrate
improvements in training time, FLOPs, and parameter efficiency while main-
taining comparable accuracy.

2) Quantum Chemistry Simulations: HQNNs have also
demonstrated advantages in quantum chemistry, where they
are used to model molecular energy states more efficiently
than classical methods. A study comparing HQNNs to classical
variational models [15] found:

• HQNN-based quantum simulations reduced computa-
tional cost by 40% compared to traditional electronic
structure methods.

• Improved accuracy of molecular energy predictions,
outperforming conventional deep neural networks.

3) Text Processing and NLP with Quantum Feature Encod-
ing: Recent research has investigated HQNNs for natural
language processing (NLP) [12]. By leveraging quantum
embeddings, HQNNs have been shown to enhance sentence
classification tasks. In a sentiment analysis benchmark:

• An HQNN outperformed a BiLSTM model on a small
dataset, demonstrating better feature extraction for low-
data NLP tasks.

• Quantum embeddings improved word representation
learning, reducing classification error by 15%.

4) Handwritten Digit Recognition with HQNNs: HQNNs
also succeed in handwritten digit recognition, showing
efficiency and reduced computational complexity. A study
comparing HQNNs to classical convolutional neural networks
(CNNs) on the MNIST dataset [24] found that:

• HQNNs achieved 98.7% accuracy, slightly surpassing
classical CNNs.

• 29% reduction in training time compared to CNNs,
highlighting improved efficiency in quantum-assisted
learning.

• 40–50% fewer trainable parameters, reducing overfit-
ting and memory requirements.

These results indicate that HQNNs offer computational ad-
vantages in low-data environments, making them promising
candidates for tasks requiring efficient learning with limited
resources.

C. Persistent Challenges in HQNN Adoption

Despite their potential, HQNNs face several challenges that
researchers have consistently highlighted:

• Hardware Limitations: The reliance on Noisy
Intermediate-Scale Quantum (NISQ) devices restricts
HQNNs’ scalability, making their real-world deployment
difficult [25].

• Decoherence and Quantum Noise: Quantum hardware
introduces errors that affect the performance of HQNN,
which require error mitigation techniques [16].

• Quantum-Classical Bottlenecks: The need for frequent
communication between quantum circuits and classical
processors introduces delays that negate potential speed-
ups [18].

D. Comparative Performance Analysis

The practical advantages of HQNNs over classical deep
learning models depend on several factors, including dataset
complexity, computational efficiency, and quantum-classical
integration challenges [25]. While HQNNs offer promising
improvements in parameter efficiency and computational com-
plexity, their benefits are constrained by current quantum
hardware limitations.

One of the primary distinctions between HQNNs and classi-
cal convolutional neural networks (CNNs) is their parameter
efficiency. CNNs typically require millions of parameters
to encode spatial hierarchies, increasing memory demands
and training times. In contrast, HQNNs leverage quantum
superposition and entanglement to encode feature spaces more
compactly, reducing the number of required parameters [19],
[24]. This reduction leads to a lower risk of overfitting,
particularly in scenarios with limited training data.

In addition to reducing parameter counts, HQNNs can
also decrease floating-point operations (FLOPs), which
directly impacts computational efficiency. Unlike classical
CNNs, which rely on large matrix multiplications and con-
volution operations, HQNNs execute feature transformations
using quantum circuits that scale logarithmically in certain
cases [12]. Current results show HQNNs reduce the number
of FLOPs resulting in lower energy consumption and faster
training times in specific problem domains [18]. However, the
extent of these improvements depends on circuit depth, dataset
characteristics, and the efficiency of quantum-classical data
transfer.

Despite these advantages, HQNNs face practical bottle-
necks that impact their real-world performance. A major
challenge is the quantum-classical interface, where data
must be frequently transferred between classical and quantum
processors. This back-and-forth exchange negates some of
the theoretical computational gains, particularly on near-term
quantum hardware where coherence times and gate fidelities
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Dataset Model Training Time (s) FLOPs (×109) Parameters (millions) Accuracy (%)
MNIST [24] Classical CNN 1200 1.5 2.1 98.5

HQNN 850 0.9 1.1 98.7
Medical Imaging (COVID-19) [1] Classical CNN 3100 4.2 5.3 96.2

HQNN 2300 2.5 3.4 96.8
Quantum Chemistry [15] Classical ML Model 5000 5.8 7.0 89.5

HQNN 3200 3.1 4.2 91.3
Sentiment Analysis (NLP) [12] BiLSTM 600 N/A 1.8 85.0

HQNN 420 N/A 1.2 86.5
Alzheimer’s Detection [2] Classical 3D CNN 3800 N/A 6.8 92.3

CQ-CNN (HQNN) 2700 N/A 3.5 94.0
Ozone Forecasting [7] Classical LSTM 1400 N/A 2.6 87.4

HQNN 950 N/A 1.4 89.6
Lipreading (LRW) [8] LSTM 1900 N/A N/A 78.1

HQCNN (PVM) 1250 N/A N/A 83.9

TABLE I
COMPARISON OF HQNN AND CLASSICAL MODELS ACROSS DIVERSE DOMAINS. NEWER HQNN STUDIES CONTINUE TO SHOW REDUCTIONS IN

TRAINING TIME, MODEL SIZE, AND PERFORMANCE IMPROVEMENTS ON MEDICAL, ENVIRONMENTAL, AND PRIVACY-SENSITIVE NLP TASKS.

Domain Classical Model HQNN Model Notable HQNN Advantages
Battery Health Estimation [9] Gradient Boosting with handcrafted

features
Quantum CNN with auto feature
fusion

+ Robustness to capacity degradation
patterns

Intrusion Detection [4] Logistic Regression and Random Forest QML-based binary classifiers + 5–8% improvement in detection on
small datasets

QSPR for CO2 Capture [5] Standard MLP HQNN with Variational Regressor + Lower RMSE, better generalization
on novel amines

TABLE II
ADDITIONAL HQNN STUDIES WHERE FLOPS OR PARAMETER COUNTS WERE NOT EXPLICITLY REPORTED BUT HQNNS SHOWED SIGNIFICANT

DOMAIN-SPECIFIC ADVANTAGES.

are limited [16]. Additionally, while quantum feature encod-
ings enable HQNNs to capture complex relationships in data,
these embeddings require precise quantum state preparation,
which remains an area of active research.

Comparative studies on real-world datasets have produced
mixed findings. HQNNs demonstrate clear advantages in low-
data regimes, such as medical imaging and quantum chem-
istry, where classical models struggle with overparameteriza-
tion [1], [15]. However, for large-scale datasets with extensive
labeled examples, classical CNNs remain more stable and
efficient due to their well-optimized architectures [24]. The
practical deployment of HQNNs will thus require further
advancements in quantum error mitigation, hybrid co-
processing architectures, and variational circuit optimiza-
tions [18].

The findings from these studies provide a clear picture of
HQNNs’ current capabilities and limitations. The next section
will discuss ongoing challenges and future directions for
improving HQNN architectures. These trade-offs highlight that
HQNNs are not yet a drop-in replacement for classical models.
Their long-term potential, however, hinges on improvements
in quantum hardware, more efficient hybrid architectures, and
domain-driven benchmarks — themes we explore in the next
section.

V. CHALLENGES AND FUTURE CONSIDERATIONS

A. Challenges in HQNN Implementation

Despite theoretical benefits, HQNNs face implementation
challenges that hinder real-world use. These challenges stem
from the limitations of current quantum hardware, the com-

plexity of hybrid system integration, and the fragility of
quantum states under noise.

1. Quantum Noise and Decoherence. Quantum systems
are vulnerable to noise and decoherence, which limit circuit
depth. Most near-term devices operate with coherence times in
the microsecond range, often too short for meaningful learning
tasks. This severely constrains the expressive power of VQCs,
which are central to HQNN architectures. While error mitiga-
tion strategies such as dynamical decoupling and probabilistic
error cancellation have shown partial success [12], [16], they
often require substantial computational overhead or circuit
repetitions that reduce training efficiency.

2. Scalability and Hardware Constraints. The scalability
of HQNNs is tightly coupled to hardware availability and
reliability. Current devices have limited qubits and connec-
tivity, restricting model size and complexity. As a result,
most HQNN research remains simulator-bound or focused
on shallow circuits tested on small QPU instances. The leap
from toy problems to full-scale applications in areas like
genomics or finance remains constrained by this hardware
bottleneck [25].

3. Quantum-Classical Bottlenecks. HQNNs require fre-
quent back-and-forth communication between classical and
quantum components during both training and inference. Each
forward pass involves executing a quantum circuit, measuring
outcomes, and using classical optimizers to update parameters.
This hybrid loop introduces latency and memory transfer
delays, particularly when executed over cloud-based QPUs.
The need for repeated circuit sampling to produce statistically
stable gradients further amplifies these inefficiencies [18].
Some recent strategies, such as batch processing and quantum-
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aware caching, attempt to mitigate this, but results remain
hardware-dependent.

4. Training Instability and Barren Plateaus. Training
HQNNs presents unique optimization challenges. Variational
circuits often suffer from barren plateaus, where gradients
vanish across large regions of the parameter space, stalling
learning [1], [12]. Additionally, noise in measurement inter-
feres with gradient estimation, particularly in gradient-based
optimizers like Adam or RMSprop. Selecting a suitable ansatz
— the structure of the quantum circuit — is non-trivial
and problem-specific. Over-parameterized circuits can become
unstable, while under-parameterized ones lack sufficient ex-
pressiveness.

5. Lack of Standardization. There is currently no unified
framework for benchmarking HQNNs across applications.
Results are often reported using different datasets, hardware
simulators, and optimization schemes, making it difficult to
compare models or reproduce experiments. This fragmentation
slows down community-wide progress and highlights the need
for common benchmarking protocols tailored to quantum-
classical hybrid architectures [12], [18].

Taken together, these challenges explain why HQNNs, de-
spite their conceptual promise, are not yet practical alternatives
to classical deep learning for most production settings. Over-
coming them will require coordinated progress in quantum
hardware design, noise-resilient training algorithms, and bet-
ter hybrid integration schemes. The next subsection outlines
promising directions currently being explored to address these
issues.

B. Future Directions

To unlock the full potential of HQNNs, future research must
address limitations in hardware reliability, training scalability,
and hybrid model integration. While theoretical results point
to strong advantages in efficiency and expressivity, practical
deployment requires coordinated progress across quantum
hardware, algorithmic optimization, and application engineer-
ing.

Advancements in Quantum Hardware: A key enabler for
scalable HQNNs will be the maturation of quantum hardware
beyond the Noisy Intermediate-Scale Quantum (NISQ) era.
Ongoing efforts by IBM, Google, and Rigetti aim to deliver
fault-tolerant quantum processors with higher gate fidelities
and longer decoherence windows [12]. These advances would
allow HQNNs to support deeper quantum circuits, richer
entanglement structures, and more expressive feature encod-
ings — expanding their applicability to large-scale learning
problems.

Hybrid co-processing architectures, where quantum proces-
sors are embedded into high-bandwidth classical systems, will
also be essential for reducing quantum-classical communica-
tion delays [18]. Early prototypes of on-chip quantum accel-
erators and quantum RAM (QRAM) promise to significantly
streamline data movement between the classical and quantum
domains.

Improved Training and Optimization Strategies: To address
the training instabilities faced by HQNNs, future work should

explore quantum-informed optimization techniques designed
specifically for VQCs. Several recent efforts focus on:

• Quantum Natural Gradient Descent (QNG), which
adapts learning rates based on the quantum state’s ge-
ometry to avoid barren plateaus [12].

• Noise-aware optimization, which integrates error mod-
els into the training loop to improve convergence in noisy
environments [24].

• Dynamic circuit pruning, which removes unnecessary
quantum gates mid-training to reduce depth and decoher-
ence risks [25].

Transfer learning, where pretrained classical or hybrid
models are fine-tuned using quantum layers, is also gaining
traction. This approach reduces the quantum workload while
maintaining accuracy, making it ideal for domains with limited
access to QPU time [20].

Expansion into New Application Domains: While HQNNs
have shown success in various fields, their use in fields like
real-time encryption, financial forecasting, and autonomous
control remains largely unexplored. These domains demand
fast, low-latency decision-making on high-dimensional data
— a niche where quantum-enhanced architectures could offer
clear advantages.

One promising future direction is quantum reinforcement
learning (QRL), where HQNNs could serve as policy net-
works capable of learning from entangled state transitions in
dynamic environments. Additionally, applications in privacy-
preserving learning — such as quantum multi-classifiers using
differential privacy techniques [8] — could bring quantum
learning closer to secure AI deployment.

Toward Fully Quantum Neural Networks: In the long term,
HQNNs may serve as a bridge toward fully quantum neural
networks (QNNs), where the entire learning process — from
input encoding to output classification — occurs in the quan-
tum domain [26]. Achieving this vision will require advances
in quantum memory, coherent activation functions, and loss
function evaluation within quantum circuits.

Figure 5 provides an overview of anticipated advancements
in HQNN development, highlighting key improvements in
hardware reliability, quantum-classical processing effi-
ciency, and enhanced training techniques. These innovations
will be crucial for overcoming existing limitations and unlock-
ing the full potential of quantum-enhanced deep learning.

Until then, HQNNs remain a pragmatic stepping stone. As
quantum hardware stabilizes and optimization pipelines ma-
ture, hybrid networks are well-positioned to deliver practical
quantum advantage in near-term AI workloads.

C. The Path Forward

As quantum hardware matures and error mitigation tech-
niques improve, HQNNs may become a practical alternative
to classical deep learning models. However, significant re-
search is still needed to bridge the gap between theoretical
advantages and real-world applicability. Future work should
focus on refining hybrid architectures, improving quantum
training methodologies, and integrating HQNNs into practical
computing environments.
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Fig. 5. Future advancements in HQNNs, adapted from [10], [14], [15], [18].
Improvements in quantum hardware and error mitigation strategies will enable
more scalable and efficient HQNN architectures.

The final section will summarize the key insights from this
paper and provide conclusions regarding the future of HQNN
research.

VI. CONCLUSION

HQNNs represent a compelling frontier in quantum-
enhanced artificial intelligence. This paper has surveyed the
theoretical underpinnings, performance characteristics, and
practical challenges of HQNNs, revealing both their strengths
and current limitations. HQNNs outperform classical models
in training efficiency, parameter use, and feature generaliza-
tion—especially on high-dimensional, low-labeled data.

However, the road to widespread adoption is not without
obstacles. Quantum noise, short coherence times, and hy-
brid bottlenecks continue to restrict HQNN scalability. These
hardware-level constraints, combined with training inefficien-
cies such as barren plateaus, necessitate more robust error
mitigation and quantum-aware optimization strategies. Fur-
thermore, comparative studies suggest that HQNNs outperform
classical models primarily in constrained or noise-tolerant
settings, indicating that hybrid architectures must be carefully
matched to task requirements.

Looking forward, progress hinges on: (1) better quantum
processor stability, (2) hybrid integration, and (3) scalable
benchmarking reflecting real deployment. As these technical
barriers are addressed, HQNNs are likely to evolve from proof-
of-concept tools into deployable AI accelerators across health-
care, chemistry, security, and other high-impact domains. Con-
sequently, as HQNNs become more integrated into medical
or financial decision-making, transparency and interpretability
will be critical for ethical deployment.

Ultimately, HQNNs may serve as an essential bridge be-
tween classical neural computation and fully quantum learning
systems. While their current capabilities are bound by the
limits of NISQ-era hardware, the foundational techniques they
introduce — including VQCs, entangled feature encoding, and
hybrid optimization — will play a critical role in shaping the
trajectory of next-generation quantum machine learning.
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