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Abstract—Hybrid Quantum Neural Networks (HQNNs) aim to
combine quantum circuits with classical deep learning to address
key challenges in model efficiency, parameter reduction, and
generalization in high-dimensional tasks. As quantum machine
learning gains momentum, understanding HQNN viability is
critical for resource-constrained and real-world AI applications.
However, HQNN adoption faces serious challenges, including
quantum noise, simulation bottlenecks, and hybrid optimization
complexity. To evaluate HQNNSs’ practical potential, this study
investigates their performance through direct experimentation
on handwritten digit classification and comparative analysis
across medical imaging, chemistry, and NLP domains. Results
show HQNNs can reduce parameter counts by up to 50%,
lower floating-point operations by 30%, and maintain or surpass
classical model accuracy — though they incur significantly
longer training times. HQNNs offer meaningful computational
and generalization advantages for small-data and embedded
applications, even as they remain unsuitable for large-scale
deployment under current hardware constraints. Overall, this
research positions HQNNs as promising candidates for near-term
hybrid quantum Al, while emphasizing the need for continued
advances in quantum hardware and hybrid optimization methods
to realize their full potential.
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1 One of the various forms of a N-qubit VQC used

in HQNNs. Each qubit begins in |0) and passes
through Hadamard gates, controlled operations,
and R, () rotations to enable entanglement and
expressive feature transformations. This circuit
forms the quantum layer, where parameter op-
timization captures complex, high-dimensional
patterns. Adapted from [1], [2], [3], [4], [5]-
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General architecture of a HQNN. Classical con-
volutional layers extract features, which are pro-
cessed by a VQC before output generation.
This hybrid structure combines classical ef-
ficiency with quantum-enhanced representation
learning [6], [7], [8].
Early studies used simple datasets and shallow
circuits [9]. Later work added benchmarks like
MNIST [2], [10], while recent research applies
HQNNSs to medical and environmental tasks, sig-

naling readiness for real-world use tasks [11], [12].

Comparison of HQNN and Classical CNN per-
formance across key computational efficiency
metrics, adapted from [10]. HQNNs demonstrate
improvements in training time, FLOPs, and pa-
rameter efficiency while maintaining comparable
ACCUTACY. . .« v v v v oo e e e e e e
Quantum circuit used in the HQNN model: four
qubits with AngleEmbedding for input encod-
ing, three entanglement layers using CNOT gates,
and 12 trainable rotation parameters (6y—611).
Measurement is performed in the Z-basis. This
circuit serves as the variational quantum layer
integrated into the HQNN architecture.

Training vs. Validation Accuracy curves for (a)
baseline CNN, (b) CNN trained with more
epochs, and (¢) HQNN with angle embedding.
These plots highlight the learning dynamics, con-
vergence speed, and generalization behavior of
each architecture.

Trend in arXiv publications (January 1, 2018
through April 24, 2025) mentioning “quantum
machine learning” in the title or abstract. The
increase highlights growing momentum toward
practical quantum machine learning applications,
including HQNNs. . . . . . ... ... ...

Future advancements in HQNNs, adapted
from [1], [2], [4], [13]. Improvements in
quantum hardware and error mitigation strategies
will enable more scalable and efficient HQNN
architectures. . . . . . . . . ... ... ...
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Comparison of HQNN and classical models
across diverse domains. Better performance val-
ues are bolded (higher accuracy, lower training
time, FLOPs, and parameters). HQNNs often
achieve greater parameter efficiency and gener-
alization at the cost of longer simulation-driven
training times. . . . . . . . .. ... ...

Additional HQNN studies where FLOPs or pa-
rameter counts were not explicitly reported but
HQNNs showed significant domain-specific ad-
vantages. . . ... ..o e e e

I Comparative performance of CNN and HQNN
models on MNIST. Metrics include accuracy,
parameter count, FLOPs, total training time, and
training scalability. The HQNN achieves com-
petitive accuracy with over 88% fewer param-
eters and lower FLOPs, but requires significantly
longer training time due to quantum circuit sim-
ulation. These results highlight HQNN efficiency
in model size and computation, with trade-offs in
training scalability.

I. INTRODUCTION

In 2023, researchers at MIT demonstrated that HQNNSs
could classify medical images with 98.7% accuracy while
using 30% fewer parameters than traditional CNNs [6]. This
breakthrough highlights the potential of quantum-assisted deep
learning to improve model efficiency while maintaining high
accuracy.

HQNNSs use superposition and entanglement to enhance
feature extraction and reduce computational overhead. This
paper reviews HQNN performance relative to classical models.
We systematically review existing findings regarding:

o The computational efficiency of HQNNs versus classical
neural networks.

o The impact of quantum feature representations on training
performance.

o The practical limitations and challenges observed in ex-
perimental HQNN studies.

Beyond technical performance, HQNNSs raise important
implications in industry, ethics, and long-term viability. As
quantum computing gradually shifts from academic novelty
to industrial investment, HQNNs are emerging as candidates
for practical Al in sectors like healthcare [11], [14], cyber-
security [15], materials science [12], [16], and environmental
modeling [17]. These systems offer faster inference and lower
complexity but raise equity, explainability, and access concern.

For example, privacy-aware HQNNs have been proposed
for biometric tasks such as lipreading, where classical DNNs
pose risks to user anonymity [18]. Meanwhile, HQNN-
based pipelines are already outperforming classical models
in resource-constrained tasks like corrosion inhibitor discov-
ery [16] and battery health estimation [19], suggesting real-
world feasibility even under current quantum hardware limi-
tations.

Given this momentum, an important question arises: Can
HQNNSs scale into reliable, general-purpose Al tools be-
yond academic benchmarks? And if so, how should the
computer science community prepare for their broader inte-
gration?

This paper examines the feasibility and limitations of
HQNNs by systematically reviewing their computational ef-
ficiency, training dynamics, and real-world applications. It
also expands upon the social and ethical framing of this
technology, drawing from recent advancements and ongoing
debates. To support this analysis, the following section first
provides a foundational overview of quantum mechanics and
its intersection with machine learning.



II. BACKGROUND AND THEORETICAL FOUNDATIONS
A. Quantum Computing and Machine Learning

Quantum computing uses quantum mechanics to perform
computations beyond classical systems [13]. Unlike classical
bits constrained to binary states (0 or 1), quantum bits (qubits)
exist in a superposition of both states, enabling exponential
computational advantages in specific domains [20].

The qubit, as the fundamental unit of quantum information,
is mathematically represented as:

1) = a|0) + B|1), la?+ 87 =1 (1)

Here, o and (3 are complex probability amplitudes, and their
squared magnitudes sum to 1. This normalization ensures that
a measurement will always collapse the qubit into a definite
state of |0) or |1). Multi-qubit states are expressed as tensor
products of individual qubits, which enables the encoding of
quantum correlations [9], [13]. The key quantum properties
and definitions relevant to computing will be covered in the
following sections.

where «, 8 € C,

Key Quantum Terms: A Practical Glossary

To improve clarity, we define essential terms relevant to
HQNNSs:

o Qubit: A quantum bit that can exist in a superposition of
0 and 1, enabling parallel information processing [13].

o Superposition: A quantum property allowing simultane-
ous existence in multiple states, giving rise to computa-
tional parallelism [21].

« Entanglement: A phenomenon where two or more qubits
are interdependent; a change in one affects the state of the
other. This is critical for learning feature correlations [13].

¢ Quantum Gate: A transformation applied to a qubit,
analogous to classical logic gates. Gates like Hadamard
and CNOT manipulate quantum states during computa-
tion [9].

o Variational Quantum Circuit (VQC): A parameterized
quantum model trained via optimization, serving as the
core quantum layer in HQNN s [1].

« Hilbert Space: A high-dimensional vector space where
quantum states live. Feature encodings into Hilbert space
enable HQNNs to capture complex data patterns [2].

e Quantum Kernel: A similarity measure computed in
quantum feature space. Used in tasks like classification
with quantum-enhanced SVMs [9].

o Measurement: The act of collapsing a quantum state
into classical information. This step is probabilistic and
introduces latency in hybrid systems [3].

1) Entanglement: Entanglement is a quantum phenomenon
that links qubits such that measuring one immediately deter-
mines the other’s state [13], [21]. This correlation is indepen-
dent of distance, enabling non-local information encoding and
efficient representation of feature dependencies in HQNNS.

A two-qubit entangled state, known as a Bell state, is
represented as:

1
V2

This state forms the theoretical basis for quantum telepor-
tation, quantum key distribution, and improved expressivity in
VQCs.

2) Hadamard Gate: The Hadamard gate (H) is a foun-
dational single-qubit gate that places a qubit into an equal
superposition of states. It is often used at the beginning of
quantum algorithms to initiate parallel exploration of solution
spaces.

Mathematically, it is defined as:
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Applied to the initial basis state |0), it produces:

|®F) = —(]00) + [11)) 2)

H =

1
7
which encodes both computational paths simultaneously for
later quantum operations.

3) Controlled-NOT gate: The Controlled-NOT (CNOT)
gate is a two-qubit quantum operation that flips the target qubit
if the control qubit is in the |1) state. It is a key component
in generating entangled states within quantum circuits.

Its matrix form is:

H]0) = —=(10) + 1)), )

1.0 00
0 1 0 0

onor= |0 o oY 5)
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When applied to a superposed input state:

1 1
5100+ 110))) = -

it produces the Bell state from Equation 2, thus entangling
the two qubits.

Quantum Machine Learning (QML) explores how quantum
computing can accelerate machine learning tasks, such as
classification, clustering, and generative modeling [21].

ONOT( (100) + |11)),  (6)

B. Introduction to HQNNs

HQNNSs integrate quantum computing layers within clas-
sical deep learning models, aiming to enhance computational
efficiency while leveraging quantum properties [9], [22]. These
models use VQCs that leverage entanglement and superposi-
tion for feature extraction.

As shown in Figure 1, HQNNs leverage an N-qubit
VQC where each qubit undergoes Hadamard transformations
(H), controlled interactions, and parameterized rotation gates
(R, (0)) [4]. This setup enables feature representations beyond
classical models, improving pattern recognition. VQCs are
typically trained using hybrid optimization methods, where
classical optimizers adjust the quantum gate parameters ()
based on loss minimization techniques [1].

HQNN Architecture Overview:
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Fig. 1: One of the various forms of a N-qubit VQC used
in HQNNs. Each qubit begins in |0) and passes through
Hadamard gates, controlled operations, and R, (6) rotations
to enable entanglement and expressive feature transforma-
tions. This circuit forms the quantum layer, where parame-
ter optimization captures complex, high-dimensional patterns.
Adapted from [1], [2], [3], [4], [5]-

o A classical neural network is used for feature extraction
and data preprocessing.

e A quantum layer (often implemented using VQCs) re-
places one or more classical layers [1].

o The quantum circuit is parameterized and trained using
gradient-based optimization, similar to classical deep
learning models [23].

Quantum

Variational

Input —% CNN —  Circuit —Output

Fig. 2: General architecture of a HQNN. Classical convolu-
tional layers extract features, which are processed by a VQC
before output generation. This hybrid structure combines clas-
sical efficiency with quantum-enhanced representation learn-
ing [6], [7], [8].

HQNNS s follow a hybrid structure where:

e A classical neural network is used for initial feature
extraction and preprocessing.

e A VQC replaces certain layers within the model, lever-
aging quantum gates to process data [2].

o Optimization is performed through hybrid training
methods, combining classical gradient-based techniques
with quantum variational parameter tuning [9].

Figure 2 provides an overview of a typical HQNN archi-
tecture, where a convolutional neural network (CNN) extracts
features before processing them through a VQC. This hy-
brid approach enables improved feature transformations while
maintaining classical efficiency.

C. Quantum Feature Representations in HONNs

Recent research shows quantum encodings can outperform
classical embeddings in high-dimensional tasks with redun-
dancy or sparsity, which often pose challenges to conventional

deep learning approaches [24]. Quantum feature represen-
tations efficiently encode high-dimensional data, reducing
computation and overfitting.

Other recent experimental studies have demonstrated the
practical applications of HQNNSs in real-world scenarios. For
instance, research on handwritten digit recognition has
shown that HQNNs can achieve comparable accuracy to
classical convolutional neural networks (CNNs) while requir-
ing substantially fewer trainable parameters, thereby reducing
computational complexity [10]. Similarly, in the domain of
quantum chemistry, HQNN-based approaches have been em-
ployed to predict the ground state energy of molecular systems
with improved precision over classical machine learning mod-
els [2]. By directly encoding quantum states into the network,
HQNNSs offer a fundamental advantage in processing quantum
mechanical data, making them well-suited for applications in
materials science and molecular modeling.

Despite these advantages, the effectiveness of HQNNs is
contingent on the efficient design of VQCs, which serve as
the backbone of quantum feature extraction. Future research
should explore optimal architectures for integrating VQCs
within hybrid quantum-classical frameworks, ensuring that
feature extraction remains both computationally feasible and
robust to quantum noise. Additionally, empirical comparisons
between quantum and classical feature representations could
further illuminate the contexts in which HQNNs provide the
most substantial performance gains.

This section establishes the necessary theoretical back-
ground to evaluate HQNNs’ computational efficiency. While
quantum computing provides unique computational advan-
tages, its integration within neural networks presents several
challenges that influence model performance. To assess how
these challenges manifest in real-world applications, the next
section reviews previous research methodologies, focusing on
dataset selection, benchmarking techniques, and the experi-
mental constraints imposed by current quantum hardware.

D. Summary of Theoretical Foundations

This section established the essential concepts needed to
understand the hybrid quantum-classical approach used in
HQNNSs. Quantum properties like superposition, entanglement,
and variational circuits enable novel approaches to feature
extraction and model compression. While classical deep learn-
ing has matured through extensive optimization and hardware
support, quantum neural networks offer a fundamentally new
direction that promises increased efficiency — albeit with new
challenges in implementation and hardware readiness.

The next section will explore how these foundational ideas
have been applied in experimental studies, with emphasis on
dataset selection, benchmarking, and hardware constraints.

III. SUMMARY OF PREVIOUS RESEARCH METHODS

To evaluate HQNNSs, researchers have applied a variety of
experimental methodologies across diverse domains, ranging
from image recognition to molecular modeling. Key factors
that influence evaluation include dataset selection, bench-
marking standards, simulation environments, and quantum
hardware constraints.



A. Datasets and Benchmarking Standards

Benchmarking HQNNSs often begins with classical datasets,
as they provide a point of comparison against well-optimized
deep learning models. The most commonly used datasets
include:

o« MNIST: Widely used for binary and multiclass digit

classification [4], [10].

e COVID-19 Chest X-rays: Used to test HQNN per-
formance in medical diagnostics with small, high-
dimensional inputs [6].

o Molecular Energy Datasets: Applied in quantum chem-
istry, evaluating energy prediction for molecular ground
states [2].

o Environmental and Materials Data: Recent studies
have extended HQNN evaluation to lithium battery
health [19] and ozone forecasting [17].

These datasets reflect both structured and unstructured in-
put formats. More recent pipelines employ data fusion [19],
data augmentation [11], and hybrid quantum-classical feature
engineering [16], signaling increased methodological sophis-
tication.

B. Performance Evaluation Metrics

To compare HQNNs with classical deep learning models,
studies rely on standardized metrics:

e Training Time: Measures convergence speed. HQNNs
often require fewer epochs due to quantum-enhanced
expressivity [10].

« Floating-Point Operations (FLOPs): Tracks computa-
tional cost. HQNNs generally show reduced FLOPs due
to logarithmic scaling of quantum circuits [9].

o Parameter Count: A lower number of tunable parame-
ters often reduces overfitting and training cost. HQNNs
are known to match classical accuracy with significantly
fewer parameters [5].

o Inference Latency: Though less frequently reported,
latency is a concern when quantum measurements are
slow [4].

However, these metrics must be contextualized. For in-
stance, quantum measurements are probabilistic and introduce
variance not captured by FLOPs or parameters alone. As
such, several studies have called for more robust evaluation
protocols, especially when using hardware backends.

C. Quantum Hardware vs. Simulation

Most HQNN experiments to date are conducted using
quantum simulators such as Qiskit Aer, PennyLane, or Ten-
sorFlow Quantum [1]. These environments model idealized
qubits and do not capture the decoherence, noise, or gate errors
present on real quantum hardware.

When HQNNS are executed on actual QPUs (e.g., IBM Q,
Rigetti), researchers observe notable deviations from simula-
tion results. Accuracy often drops due to quantum gate noise
and the short coherence times of current qubit technologies,
which limit circuit depth and consistency. Execution time also
increases significantly, primarily because of quantum-classical

communication delays introduced during iterative training and
measurement. Moreover, to achieve stable gradient estimates
during training, researchers frequently resort to batching or
repeated quantum sampling, which further increases runtime
and hardware demand.

Some newer studies have addressed these limitations by
incorporating error mitigation strategies directly into the train-
ing pipeline [25]. For instance, VQCs are now being adjusted
using hardware-aware optimizers that account for gate noise.
Additionally, certain tasks—such as lipreading and biometric
detection—have benefited from integrating differential privacy
layers, which also improve noise robustness during quantum
inference [18]. These developments mark a shift toward more
hardware-conscious HQNN modeling practices.

D. Evolution of HONN Methodologies

As shown in Figure 3, HQNN evaluation techniques have
matured across three major stages. Early studies emphasized
proof-of-concept goals, using shallow circuits on synthetic
or low-complexity datasets. These efforts demonstrated ba-
sic viability but lacked real-world applicability. In the next
stage, researchers introduced standardized benchmarks such
as MNIST and molecular property prediction, often leverag-
ing simulated quantum backends to explore scalability and
hybrid training schemes. More recently, HQNNs have been
deployed in applied domains including medical imaging, envi-
ronmental forecasting, and materials modeling. These modern
approaches increasingly involve both simulator and real-QPU
pipelines [11], [12], [16], reflecting a shift toward full-stack
experimentation and deployment-oriented design.

' N
Early HQNNs (2018-2020)
Toy datasets, shallow circuits

h

Benchmark Stage (2020-2023)
MNIST, molecule simulations

h

Modern HQNNs (2023-2025)

Real-world data, QPU-aware methods
_ J

Fig. 3: Early studies used simple datasets and shallow cir-
cuits [9]. Later work added benchmarks like MNIST [2],
[10], while recent research applies HQNNs to medical and
environmental tasks, signaling readiness for real-world use
tasks [11], [12].

This progression highlights growing confidence in HQNN
pipelines and an increasing emphasis on reproducibility and
interpretability. Many of the most recent frameworks have
adopted more advanced training techniques, including quan-
tum transfer learning [23], hybrid generative adversarial net-
works (GANSs), and decision trees augmented with quantum



feature spaces [10]. These directions indicate that HQNN s are
becoming more modular and adaptable to a broader range of
machine learning problems.

E. Summary

Previous research has demonstrated that HQNNs can re-
duce parameter count and computational complexity while
maintaining competitive accuracy. However, results obtained
from simulations may not fully translate to hardware im-
plementations. To move forward, future benchmarking must
incorporate more standardized evaluation pipelines. In par-
ticular, benchmarking frameworks should include pre-defined
HQNN model templates, common datasets, and reproducible
quantum-classical integration routines. Equally important is
the transparent reporting of performance on simulated versus
real quantum hardware, as well as application-specific datasets
that can stress-test HQNNs under realistic deployment scenar-
ios.

IV. FINDINGS FROM PREVIOUS RESEARCH
A. HONNs vs. Classical Neural Networks

Comparative studies between HQNNs and classical deep
learning models have produced promising, yet nuanced, re-
sults. HQNNs often demonstrate computational advantages
through quantum-enhanced feature representations, though
these benefits are highly dependent on dataset complexity,
circuit depth, and integration strategies [10].

Parameter Efficiency and FLOP Reduction. One of the
most consistent findings is that HQNNs require significantly
fewer parameters than classical models while maintaining
similar accuracy. Studies report reductions of up to 40-50% in
trainable parameters, particularly in image classification and
chemistry-based models [2]. In addition, HQNNs demonstrate
a 30% reduction in FLOPs due to the linear algebraic effi-
ciency of quantum circuits [9]. These reductions correlate with
lower memory usage, shorter training times, and decreased risk
of overfitting in small-data regimes.

Faster Convergence and Generalization. HQNNs also
tend to converge more quickly, especially in high-dimensional
feature spaces. Some studies observe a 20-35% speedup in
training convergence compared to classical CNNs [4]. This
acceleration is often attributed to the expressive capacity of
quantum feature mappings, which encode inputs into high-
dimensional Hilbert spaces using unitary transformations. For
example, a quantum embedding function ®(x) maps classical
input x to a quantum state:

[W(x)) = U()[0)*", ©)

where U(z) is a parameterized quantum circuit. This map-
ping enables HQNNs to capture correlations and dependen-
cies that classical networks may miss, while simultaneously
regularizing model complexity through entanglement and in-
terference effects [3].

Overfitting Resistance and Noise Regularization. Several
HQNN implementations demonstrate improved performance

on small datasets, including in domains like medical imag-
ing and disease prediction [6]. These results suggest that
HQNNSs offer a form of implicit regularization, reducing the
tendency to overfit by leveraging probabilistic measurement
and entanglement-based constraints during training.

Remaining Limitations. Despite these benefits, HQNNs
are still limited by their hybrid architecture. The quantum-
to-classical interface introduces overhead, particularly due to
measurement and communication delays between quantum
processors and classical optimizers [4]. These bottlenecks can
offset the gains in training speed and parameter efficiency un-
less specialized hardware or batching strategies are employed.

Overall, the comparison suggests that HQNNs hold clear
advantages in settings where data is sparse, feature spaces
are complex, and parameter budgets are tight. Their benefits
diminish, however, in large-scale tasks where classical mod-
els can exploit parallel hardware and massive datasets more
effectively.

Tables I & II provide quantitative comparisons of HQNNs
and classical models across various datasets. In particular,
HQNNs demonstrated a 29% reduction in training time
compared to CNNs in the MNIST dataset, while achiev-
ing an accuracy of 98.7%, slightly surpassing its classical
counterpart [10]. Similarly, in medical imaging applications,
HQNNSs achieved a significant FLOP reduction (from 4.2
billion to 2.5 billion), which underlines their computational
efficiency [6].

Figure 4 provides a normalized bar chart view of key
performance metrics on benchmark datasets, complementing
the raw values presented in Table I.
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Fig. 4: Comparison of HQNN and Classical CNN perfor-
mance across key computational efficiency metrics, adapted
from [10]. HQNNs demonstrate improvements in training
time, FLOPs, and parameter efficiency while maintaining
comparable accuracy.



Dataset Model Training Time (s) | FLOPs (x10%) | Parameters (millions) | Accuracy (%)
MNIST [10] Classical CNN 900 1.5 2.1 98.5
HQNN 1200 0.9 1.1 98.7
Medical Imaging (COVID-19) [6] Classical CNN 480 42 5.3 96.2
HQNN 1440 2.5 34 96.8
Quantum Chemistry [2] Classical ML Model N/A 5.8 7.0 89.5
HQNN N/A 3.1 4.2 91.3
Sentiment Analysis (NLP) [9] BILSTM N/A N/A 1.8 85.0
HQNN N/A N/A 1.2 86.5
Alzheimer’s Detection (3D MRI) [11] Classical 3D CNN 2700 N/A 6.8 923
CQ-CNN (HQNN) 4100 N/A 35 94.0
Ozone Forecasting [17] Classical LSTM 1500 N/A 2.6 87.4
HQNN 2280 N/A 14 89.6
Lipreading (LRW) [18] LSTM 420 N/A N/A 78.1
HQCNN (PVM) 780 N/A N/A 83.9
Tsunami Prediction [26] Classical CNN 180 N/A 3.6 91.3
HQNN 900 N/A 2.4 94.2

TABLE I: Comparison of HQNN and classical models across diverse domains. Better performance values are bolded (higher
accuracy, lower training time, FLOPs, and parameters). HQNNs often achieve greater parameter efficiency and generalization

at the cost of longer simulation-driven training times.

Domain Classical Model HQNN Model Notable HQNN Advantages
Battery Health Estimation [19] | Gradient Boosting with handcrafted | Quantum CNN with auto feature | + Robustness to capacity degradation
features fusion patterns

Intrusion Detection [15] Logistic Regression and Random Forest

QML-based binary classifiers + 5-8% improvement in detection on

small datasets

QSPR for CO, Capture [12] Standard MLP

HQNN with Variational Regressor | + Lower RMSE, better generalization

on novel amines

TABLE II: Additional HQNN studies where FLOPs or parameter counts were not explicitly reported but HQNNs showed

significant domain-specific advantages.

B. Application-Specific Findings

HQNNSs have been explored in multiple domains, including
computer vision, quantum chemistry, and natural language
processing (NLP). Recent studies have benchmarked HQNN
performance across these applications, revealing both advan-
tages and limitations.

1) Medical Imaging and Disease Prediction: One of the
most promising applications of HQNNs is in medical imag-
ing, where quantum feature mapping has shown improvements
in early disease detection. A study using COVID-19 X-ray
classification [6] found that an HQNN model achieved:

e 96.8%

2.1%.

e 35% fewer parameters, reducing model complexity

without sacrificing performance.

e 28% reduction in training time, indicating improved

efficiency in quantum feature encoding.

2) Quantum Chemistry Simulations: HQNNs have also
demonstrated advantages in quantum chemistry, where they
are used to model molecular energy states more efficiently
than classical methods. A study comparing HQNNSs to classical
variational models [2] found:

accuracy, outperforming classical CNNs by

¢ HQNN-based quantum simulations reduced computa-
tional cost by 40% compared to traditional electronic
structure methods.
o Improved accuracy of molecular energy predictions,
outperforming conventional deep neural networks.
3) Text Processing and NLP with Quantum Feature Encod-
ing: Recent research has investigated HQNNs for natural
language processing (NLP) [9]. By leveraging quantum

embeddings, HQNNs have been shown to enhance sentence
classification tasks. In a sentiment analysis benchmark:

o An HQNN outperformed a BiLSTM model on a small
dataset, demonstrating better feature extraction for low-
data NLP tasks.

e Quantum embeddings improved word representation
learning, reducing classification error by 15%.

4) Handwritten Digit Recognition with HQNNs: HQNNs
also succeed in handwritten digit recognition, showing effi-
ciency and reduced computational complexity. A study com-
paring HQNNS to classical CNNs on the MNIST dataset [10]
found that:

« HQNNSs achieved 98.7% accuracy, slightly surpassing
classical CNNss.

e 29% reduction in training time compared to CNNs,
highlighting improved efficiency in quantum-assisted
learning.

e 40-50% fewer trainable parameters, reducing overfit-
ting and memory requirements.

These results indicate that HQNNs provide computational
advantages in low-data environments, making them promis-
ing candidates for tasks requiring efficient learning with lim-
ited resources.

C. Persistent Challenges in HONN Adoption

Despite their potential, HQNNSs face several challenges that
researchers have consistently highlighted:

o Hardware Limitations: The reliance on Noisy

Intermediate-Scale Quantum (NISQ) devices restricts




HQNNSs’ scalability, making their real-world deployment
difficult [25].

o Decoherence and Quantum Noise: Quantum hardware
introduces errors that affect the performance of HQNN,
which require error mitigation techniques [3].

o Quantum-Classical Bottlenecks: The need for frequent
communication between quantum circuits and classical
processors introduces delays that negate potential speed-
ups [4].

D. Comparative Performance Analysis

The practical advantages of HQNNs over classical deep
learning models depend on several factors, including dataset
complexity, computational efficiency, and quantum-classical
integration challenges [25]. While HQNNs offer promising
improvements in parameter efficiency and computational com-
plexity, their benefits are constrained by current quantum
hardware limitations.

One of the primary distinctions between HQNNs and clas-
sical CNNs is their parameter efficiency. CNNs typically
require millions of parameters to encode spatial hierarchies,
increasing memory demands and training times. In contrast,
HQNNSs leverage quantum superposition and entanglement to
encode feature spaces more compactly, reducing the number
of required parameters [5], [10]. This reduction leads to a
lower risk of overfitting, particularly in scenarios with limited
training data.

In addition to reducing parameter counts, HQNNs can
also decrease FLOPs, which directly impacts computational
efficiency. Unlike classical CNNs, which rely on large matrix
multiplications and convolution operations, HQNNs execute
feature transformations using quantum circuits that scale log-
arithmically in certain cases [9]. Current results show HQNNs
reduce the number of FLOPs resulting in lower energy con-
sumption and faster training times in specific problem do-
mains [4]. However, the extent of these improvements depends
on circuit depth, dataset characteristics, and the efficiency of
quantum-classical data transfer.

Despite these advantages, HQNNs face practical bottle-
necks that impact their real-world performance. A major
challenge is the quantum-classical interface, where data
must be frequently transferred between classical and quantum
processors. This back-and-forth exchange negates some of
the theoretical computational gains, particularly on near-term
quantum hardware where coherence times and gate fidelities
are limited [3]. Additionally, while quantum feature encodings
enable HQNNS to capture complex relationships in data, these
embeddings require precise quantum state preparation, which
remains an area of active research.

Comparative studies on real-world datasets have produced
mixed findings. HQNNs demonstrate clear advantages in low-
data regimes, such as medical imaging and quantum chem-
istry, where classical models struggle with overparameteriza-
tion [2], [6]. However, for large-scale datasets with extensive
labeled examples, classical CNNs remain more stable and
efficient due to their well-optimized architectures [10]. The
practical deployment of HQNNs will thus require further

advancements in quantum error mitigation, hybrid co-
processing architectures, and VQC optimizations [4].

The findings from these studies provide a clear picture of
HQNNSs’ current capabilities and limitations. The next section
will discuss ongoing challenges and future directions for
improving HQNN architectures. These trade-offs highlight that
HQNN:Ss are not yet a drop-in replacement for classical models.
Their long-term potential, however, hinges on improvements
in quantum hardware, more efficient hybrid architectures, and
domain-driven benchmarks — themes we explore in the next
section.

V. CHALLENGES IN HQNN IMPLEMENTATION

Despite theoretical benefits, HQNNs face implementation
challenges that hinder real-world use. These challenges stem
from the limitations of current quantum hardware, the com-
plexity of hybrid system integration, and the fragility of
quantum states under noise.

1. Quantum Noise and Decoherence. Quantum systems
are vulnerable to noise and decoherence, which limit circuit
depth. Most near-term devices operate with coherence times
in the microsecond range, often too short for meaningful
learning tasks. This severely constrains the expressive power
of VQCs, which are central to HQNN architectures. While
error mitigation strategies such as dynamical decoupling and
probabilistic error cancellation have shown partial success [9],
[3], they often require substantial computational overhead or
circuit repetitions that reduce training efficiency.

2. Scalability and Hardware Constraints. The scalability
of HQNNS is tightly coupled to hardware availability and
reliability. Current devices have limited qubits and connec-
tivity, restricting model size and complexity. As a result,
most HQNN research remains simulator-bound or focused
on shallow circuits tested on small QPU instances. The leap
from toy problems to full-scale applications in areas like
genomics or finance remains constrained by this hardware
bottleneck [25].

3. Quantum-Classical Bottlenecks. HQNNs require fre-
quent back-and-forth communication between classical and
quantum components during both training and inference. Each
forward pass involves executing a quantum circuit, measuring
outcomes, and using classical optimizers to update parameters.
This hybrid loop introduces latency and memory transfer
delays, particularly when executed over cloud-based QPUs.
The need for repeated circuit sampling to produce statistically
stable gradients further amplifies these inefficiencies [4]. Some
recent strategies, such as batch processing and quantum-aware
caching, attempt to mitigate this, but results remain hardware-
dependent.

4. Training Instability and Barren Plateaus. Training
HQNNSs presents unique optimization challenges. VQCs often
suffer from barren plateaus, where gradients vanish across
large regions of the parameter space, stalling learning [6],
[9]. Additionally, noise in measurement interferes with gra-
dient estimation, particularly in gradient-based optimizers like
Adam or RMSprop. Selecting a suitable ansatz — the structure
of the quantum circuit — is non-trivial and problem-specific.



Over-parameterized circuits can become unstable, while under-
parameterized ones lack sufficient expressiveness.

5. Lack of Standardization. There is currently no unified
framework for benchmarking HQNNs across applications.
Results are often reported using different datasets, hardware
simulators, and optimization schemes, making it difficult to
compare models or reproduce experiments. This fragmentation
slows down community-wide progress and highlights the need
for common benchmarking protocols tailored to quantum-
classical hybrid architectures [4], [9].

Taken together, these challenges explain why HQNNS, de-
spite their conceptual promise, are not yet practical alternatives
to classical deep learning for most production settings. Over-
coming them will require coordinated progress in quantum
hardware design, noise-resilient training algorithms, and bet-
ter hybrid integration schemes. The next subsection outlines
promising directions currently being explored to address these
issues.

VI. EXPLORATIONS PHASE: HQNNS FOR IMAGE
CLASSIFICATION

To assess HQNN utility, I built handwritten digit classifiers
on MNIST using TensorFlow, PennyLane, and Keras. The
VQC architecture is shown in Figure 5. It consists of 4 qubits,
12 trainable rotation parameters, and layered entanglement op-
erations, reflecting a standard hybrid design using PennyLane’s
StronglyEntanglingLayers template.

All quantum circuits were simulated using PennyLane’s
backend, leading to significantly longer training times due
to quantum simulation overhead. The goal was to compare
HQNNs to CNNs and evaluate hybrid trade-offs.

A. Model Performance

All models used the same structure: CNN layers processed
inputs, then fed into either a VQC (HQNN) or dense layers
(CNN). For quantum circuits, PennyLane’s KerasLayer
was used to integrate VQCs with AngleEmbedding for
feature encoding and StronglyEntanglingLayers as
the trainable ansatz. All models were trained using the Adam

Angle Embedding Entanglement Layer 1
—— A

Entanglement Layer 2
N

optimizer and evaluated using accuracy, FLOPs, trainable
parameter counts, and training time.

Three key models were tested:

e CNN Baseline (Classic): A standard convolutional model

using dense output layers.

o CNN Extended: Trained with more epochs for compar-

ison with HQNN.

« HQNN (Angle Embedded): A hybrid quantum-classical

model using a VQC with angle encoding.

These results in Table III show that HQNNs are capable of
achieving comparable accuracy to classical CNNs while using
significantly fewer parameters. Notably, the angle-embedded
HQNN reached 97.55% accuracy with just 11,162 parameters
— far fewer than the 93,322 in CNNs. However, training
time was much longer due to quantum circuit evaluations on
quantum simulators, and inference latency remains a limiting
factor.

Amplitude encoding was also tested but underperformed and
incurred high runtime costs, making it impractical for scalable
training. As a result, this model variant was excluded from
final comparisons.

To further visualize training behavior and generalization
trends, Figure 6 presents the training and validation accuracy
curves for each tested model.

B. Comparing HONNs and CNNs

Classical CNNs retain advantages in efficiency and hard-
ware compatibility, but HQNNs offer superior parameter
compactness. The HQNN model used fewer parameters than
both CNN models, suggesting greater suitability for resource-
constrained or embedded environments.

This experiment underscores a key trade-off: HQNNs are
slower but leaner. For domains such as edge computing,
robotics, or mobile inference—where model size and power
usage are critical—HQNNSs may eventually prove superior as
quantum hardware evolves.

C. Tools, Frameworks, and References

To build and evaluate both classical CNNs and hybrid
HQNNSs, a variety of machine learning and quantum com-
puting tools were integrated directly into the experimental
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Fig. 5: Quantum circuit used in the HQNN model: four qubits with AngleEmbedding for input encoding, three entanglement
layers using CNOT gates, and 12 trainable rotation parameters (6y—611). Measurement is performed in the Z-basis. This circuit
serves as the variational quantum layer integrated into the HQNN architecture.



Model Accuracy (%) | Parameters FLOPs Train Time (s) | Total Epochs | Avg. Time/Epoch (s)
CNN Baseline (Classic) 98.92 93,322 5,646,588 80.74 4 20.19
CNN Extended (More Epochs) 99.04 93,322 5,646,588 175.35 10 17.54
HQNN (Angle Embedded) 97.55 11,162 2,083,073 6665.56 20 333.28

TABLE III: Comparative performance of CNN and HQNN models on MNIST. Metrics include accuracy, parameter count,
FLOPs, total training time, and training scalability. The HQNN achieves competitive accuracy with over 88% fewer parameters
and lower FLOPs, but requires significantly longer training time due to quantum circuit simulation. These results highlight
HQNN efficiency in model size and computation, with trade-offs in training scalability.

workflow. These tools supported all phases — from design
to evaluation — ensuring consistency and reproducibility.

Core resources included:

e TensorFlow [27] and Keras [28] for classical model
construction, training, and evaluation.

o PennyLane [29] for quantum circuit definition and inte-
gration using hybrid layers such as KerasLayer.

« Matplotlib [30] and JSON for performance visualization
and logging of training metrics.

e The keras_flops library for estimating FLOP counts
used in performance benchmarking.

e QML tutorials and hybrid HQNN guides published by
Xanadu AI [31], which provided implementation best
practices and architecture examples.

o Prior research, such as “Hybrid Quantum-Classical Neu-
ral Networks for Image Classification” [2], which inspired
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circuit structure choices, feature encodings, and ansatz
selection.

These tools and references supported rapid experimentation
and enabled accurate comparisons between classical CNNs
and HQNN models across multiple architectural configura-
tions.

D. Future Work: HQNNs in Reinforcement Learning

Building on the insights gained from this exploration phase,
I am currently extending HQNN architectures into a reinforce-
ment learning (RL) setting within a high-fidelity simulation
environment. Specifically, this research project involves a
multi-agent system in Microsoft’s AirSim, where a drone
assists a car in navigating a predefined path based on visual
input. The drone’s camera provides a top-down view of the
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Fig. 6: Training vs. Validation Accuracy curves for (a) baseline CNN, (b) CNN trained with more epochs, and (c) HQNN
with angle embedding. These plots highlight the learning dynamics, convergence speed, and generalization behavior of each

architecture.
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environment, and a policy network - initially a classical neural
network - guides the car’s steering and movement decisions.

The next phase will investigate the substitution of this
classical policy network with a HQNN, evaluating whether
HQNNs can offer improved generalization, parameter effi-
ciency, or faster convergence when learning dynamic control
policies from high-dimensional image data. This research
tests HQNNs beyond static data, applying them to dynamic,
partially observable environments.

VII. FUTURES: HQNNS

HQNN development is poised to accelerate within the next
year. This section outlines key advances based on research
trends, industry roadmaps, and hardware progress, bridging
theory and real-world deployment.

This forecast is reinforced by the significant influx of in-
vestment into quantum technologies. IBM recently announced
a $150 billion commitment to U.S. manufacturing over the
next five years, with over $30 billion dedicated to research and
development areas including quantum computing [32]. Venture
capital funding for quantum computing startups also reached
a record $1.9 billion in 2024, marking a 138% increase from
the previous year [33]. Globally, public investment in quantum
initiatives has surpassed $44.5 billion, with over 30 govern-
ments launching dedicated quantum technology programs [34].
These investments suggest quantum infrastructure, including
HQNNSs, will advance rapidly.

These predictions build on mental models from the Founda-
tions phase, including bottleneck-resolution, error mitigation,
and domain-specific deployment strategies.

This Futures analysis predicts the following developments
over the next 6 to 12 months:

Within the Next 6 Months:

o Circuit cutting techniques and parameter-shift rule
innovations are expected to enable deeper HQNN archi-
tectures on limited NISQ hardware.

o Research focus on security frameworks tailored to
hybrid quantum-classical systems is likely to increase
significantly.

Within the Next 12 Months:

o Application-specific HQNN deployments are projected
to expand further into domains such as healthcare imag-
ing, finance, and physics related applications.
Early-stage hardware innovations, including Amazon’s
Ocelot chip and Microsoft’s Majorana 1 processor, are
expected to drive experimental expansions in quantum
machine learning research pipelines.

Interpretability tools, such as Q-LIME, are anticipated
to become increasingly critical for HQNNs deployed in
regulated industries like healthcare and finance.

This outlook shapes my applied research with Dr. Srikanth
Vemula, where we are integrating HQNN’s into multi-agent re-
inforcement learning using AirSim, with the goal of evaluating
HQNN performance for visual-guided control tasks.
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A. Enabling Large-Scale HONNs on Limited Hardware

A persistent bottleneck in HQNN scalability is the limited
qubit count and coherence time of current NISQ devices.
Marchisio et al. introduce a circuit cutting methodology that
partitions HQNNs into smaller subcircuits without losing
gradient connectivity, allowing complex architectures to run on
constrained quantum hardware [35]. Circuit cutting is expected
to become standard in hybrid HQNN pipelines within the
year. This technique enables larger, deeper HQNNs without
immediate dependence on fault-tolerant qubits.

B. Growing Emphasis on HONN Security and Robustness

Robustness against adversarial manipulation remains under-
developed in HQNNs. Guo et al. present the first detailed
analysis of backdoor vulnerabilities in HQNNSs, introducing
the Qcolor backdoor method [36]. They show that while
HQNNSs require more substantial perturbations for a successful
attack than CNNs, they are not invulnerable. Security and
backdoor defenses will become essential for HQNN s as hybrid
models expand into finance, defense, and healthcare.

C. Acceleration of Training Through Quantum-Aware Gradi-
ent Techniques

Optimization is a primary practical barrier for HQNNs.
Generalized parameter-shift rules now allow the efficient
calculation of quantum gradients even for complex multi-
parameter gates [35]. Mainstream quantum-aware gradients
will bring improved stability, faster convergence, and lower
circuit costs for models trained in high-noise environments.

Furthermore, emerging techniques like Quantum Natural
Gradient Descent (QNG) and noise-aware optimizers are gain-
ing momentum [9]. These approaches tailor optimization path-
ways to the quantum landscape, helping mitigate phenomena
like barren plateaus and improving resilience to decoherence.

D. Responsible Quantum Al: Interpretability and Ethics

Interpretability will become central to HQNN design. Pira
and Ferrie extend classical local explanation techniques into
the quantum domain, introducing Q-LIME to explain individ-
val quantum predictions [37]. Beyond performance metrics,
next-generation HQNNs will need to offer intelligible ratio-
nales for their decisions, particularly in regulated domains like
healthcare and finance.

E. Application-Focused Progress: Healthcare, Finance, and
Energy

The deployment of HQNNs will center on domains that can
tolerate hybrid classical-quantum workflows and capitalize on
quantum-specific advantages. Gujju et al. highlight successful
early deployments in medical imaging, financial anomaly
detection, and high-energy physics [38]. Over the next year,
pilot projects are likely to expand into real-time encryption
systems, smart grid optimization, and secure data analytics,
where HQNNs’ ability to model complex entangled systems
provides a unique edge.
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Fig. 7: Trend in arXiv publications (January 1, 2018 through April 24, 2025) mentioning “quantum machine learning” in the
title or abstract. The increase highlights growing momentum toward practical quantum machine learning applications, including

HQNNG.

The healthcare sector is rapidly adopting quantum comput-
ing applications. The global quantum computing in healthcare
market, valued at $85 million in 2023, is projected to reach
$503 million by 2028, growing at a CAGR of 42.5% [39].
In the United States alone, the broader quantum computing
market size is estimated at $40.10 billion in 2024 [40],
underscoring the nation’s pivotal role in this domain. This
growth aligns with early deployments of HQNNs in areas
such as medical imaging and diagnostics, where quantum com-
puting’s ability to process complex datasets offers significant
advantages.

Expansion into healthcare, finance, and energy is driven
by growing quantum investment from industry and govern-
ment [32], [33], [34].

Quantum reinforcement learning (QRL) also represents a
promising frontier, where HQNNs could model dynamic poli-
cies in complex environments.

F. Hardware Constraints and the Realistic Path Ahead

While excitement around quantum computing remains high,
industry leaders stress tempered expectations. Google’s quan-
tum research division estimates a five-year horizon for scal-
able, fault-tolerant systems [41]. Consequently, HQNN strate-
gies must assume continued reliance on hybrid architectures,
quantum error mitigation, and low-depth circuit designs in the
near term.

The steady rise in quantum machine learning publications,
shown in Figure 7, reflects growing research momentum
despite hardware limitations. The rising investment reflects
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recognition that HQNNs offer a near-term path to quantum
advantage.

G. Hardware Innovation Potential

The field is also buoyed by innovations in quantum hard-
ware. Amazon’s Ocelot chip offers modular, scalable architec-
tures with enhanced qubit coherence times [42]. Microsoft’s
Majorana 1 processor leverages topological qubits to suppress
decoherence errors dramatically [43]. Though still in early-
stage testing, these technologies hint at mid-term gains in
reliable quantum computation, potentially allowing HQNNs
to utilize deeper, more expressive quantum circuits.

Advances in quantum hardware and error mitigation will
enable more scalable HQNNs. A high-level roadmap of this
transition is illustrated in Figure 8, where improved proces-
sors and error-resilient architectures are projected to converge
toward optimized HQNN:Ss.

H. Toward Fully Quantum Neural Networks

In the long term, HQNNSs are expected to evolve into fully
quantum neural networks (QNNs), where both data encoding
and processing occur natively in the quantum domain [44].
Achieving this future will require innovations such as quantum
memory units, coherent quantum activation functions, and
quantum-native loss computation methods.

1. Summary and Research Alignment

The next 6 to 12 months will be pivotal as advances
in hardware, interpretability, and hybrid optimization push
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Fig. 8: Future advancements in HQNNs, adapted from [1],
[2], [4], [13]. Improvements in quantum hardware and error
mitigation strategies will enable more scalable and efficient
HQNN architectures.

HQNNSs toward real-world deployment. This Futures analysis
predicts that:

Circuit cutting and parameter-shift innovations will
allow deeper HQNNs to operate on limited quantum
hardware.

Security frameworks tailored to quantum architectures
will gain importance as adversarial threat models evolve.
Interpretability tools like Q-LIME will become integral
to HQNN development in regulated industries.
Application-specific adoption will grow, especially in
healthcare, finance, and energy, where HQNNs offer
meaningful advantages with constrained data or hard-
ware.

Hardware innovations such as Amazon’s Ocelot and
Microsoft’s Majorana 1 will expand experimental capa-
bilities for quantum machine learning.

These trends shape academic research — including my own
reinforcement learning project with HQNNSs. In this ongoing
work, a drone provides visual guidance to a car navigating
a track, with a classical policy network controlling movement
based on drone-captured images. Guided by predictions in this
Futures analysis, we are working to integrate HQNNs into
this pipeline by replacing the classical policy model with a
quantum-enhanced alternative.

This substitution is motivated by several short-term HQNN
advantages: improved generalization from quantum feature
encoding, reduced parameter count for policy optimization,
and potentially faster convergence in dynamic learning en-
vironments. Our experimental setup, which leverages high-
dimensional image data in a simulated physical world, aligns
with emerging consensus that HQNNs perform best under
constrained yet information-rich conditions. As quantum Al
matures, projects like this will test its viability in autonomous
systems, robotics, and real-time control.
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VIII. CONCLUSION

HQNNSs are a promising but transitional step in quantum-
enhanced Al. This paper has explored their theoretical foun-
dations, comparative performance, and practical challenges
across multiple domains. HQNNSs offer advantages like fewer
parameters, lower computational cost, and better generaliza-
tion in high-dimensional, low-data settings—but key chal-
lenges remain.

Quantum noise, short coherence times, and hybrid bottle-
necks continue to restrict scalability. Training challenges like
barren plateaus and limited circuit depth further constrain their
applicability to large-scale or latency-sensitive settings. Our
own exploration reinforces these limitations: though slower
due to simulation overhead, HQNNs achieved comparable ac-
curacy with over 88% fewer parameters, highlighting potential
in resource-constrained scenarios such as embedded systems.

Short-term gains—Ilike circuit cutting, tools like Q-LIME,
and domain-specific tuning—may extend HQNN use in health-
care, materials, and infrastructure. However, these opportuni-
ties hinge on resolving core challenges in hardware stability,
hybrid integration, and benchmarking consistency.

HQNNSs are best viewed not as replacements for classical
deep learning, but as transitional tools suited for niche domains
that demand efficient learning under tight constraints. As
quantum hardware matures, they may evolve into deployable
Al accelerators, laying the foundation for fully quantum neural
networks. While unsuitable for large-scale deployment under
current constraints, HQNNs are well-positioned for near-term
impact in resource-limited Al applications.

Ethics and Responsible Use. As HQNNs enter sensitive
domains like healthcare, finance, and defense, responsible
development will be essential. These models introduce new
forms of opacity and probabilistic decision-making, raising
concerns about explainability, bias, and misuse. Future re-
search and applications must emphasize transparency, user
trust, and alignment with ethical guidelines to ensure HQNNs
serve as equitable and accountable Al systems.
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APPENDIX

COURSEWORK INTEGRATION AND PROJECT
DEVELOPMENT

The successful completion of this project was built on
prior coursework and independent research across Computer
Science and Mathematics. Key coursework included Machine
Learning (CSCI 332), which provided theoretical and practi-
cal foundations for designing, training, and evaluating neural
networks — a critical base for constructing HQNN models.
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Algorithms and Concurrency (CSCI 338) further strength-
ened my ability to analyze efficiency and optimize resource
usage, essential when handling quantum circuit simulators and
addressing training bottlenecks.

Mathematical preparation also played a major role. Multi-
variable Calculus (MATH 305) expanded my understanding
of high-dimensional optimization, with gradients, Jacobians,
and Hessians becoming central when studying parameter-
shift optimization techniques for quantum circuits. Operations
Research (MATH 315) and Numerical Methods (MATH
338) developed my skills in convergence analysis, numerical
stability, and optimization — directly applicable to evaluating
hybrid models in noisy simulation environments.

Beyond formal coursework, I pursued an Independent
Learning Project (ILP) mentored by Professors Kristen Nairn
and Srikanth Vemula. Through this, I self-taught quantum
computing fundamentals using Quantum Computing for the
Quantum Curious [13], practiced quantum circuit design with
IBM’s Qiskit platform, and built a quantum teleportation
circuit to encode binary data. These experiences solidified my
skills in quantum operations, entanglement, and VQC design
— all crucial for HQNN research.

The current HQNN project required the direct integration of
classical machine learning and quantum computing expertise.
Building and optimizing hybrid models surfaced real-world
challenges like training instability, simulation bottlenecks, and
optimization inefficiencies. Working through these constraints
pushed my understanding beyond traditional coursework and
prepared me for future research at the intersection of quantum
machine learning, reinforcement learning, and applied quan-
tum technologies.
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