
	

Central	
 Processing	
 Unit	
 Performance	

William R. Salinas
Computer Science Department

Saint John's University
Collegeville, MN

wrsalinas@csbsju.edu

Abstract – High performance computing often requires that algorithms are run on large data sets or that
other demanding tasks are performed. If we were to use a CPU from 10 years ago to run the operations we
perform today, the run time would be exponentially longer than they already are. In order to keep run times
reasonable we must continue advancing our hardware technology. This research will consist of running the
quicksort algorithm on two different computers to demonstrate the difference in processing power and
performance between two CPUs. Quicksort will be run under different conditions such as sequentially, in
parallel, and on data sets of varying sizes to observe the processor’s capabilities under light and heavy
workloads. The results will consist of run time averages to ensure consistency and they will be graphed for
analysis. The contributions of modern technology should make themselves apparent and the CPUs’ different
strengths and weaknesses can be determined. The hypothesized superior performance of the parallel
quicksort algorithm and the CPUs in SJU’s ‘Beefy’ are the focuses of the study along with the contributions
given to their performance by technological advances.

Table of Contents
I.	
 INTRODUCTION	
 ..	
 3	

II.	
 BACKGROUND	
 ..	
 3	

1.	
 Early	
 Advances	
 ...	
 3	

2.	
 Performance	
 Growth	
 ...	
 3	

3.	
 The	
 Problem	
 ..	
 3	

4.	
 The	
 Solution	
 ...	
 3	

5.	
 Challenges	
 ..	
 4	

III.	
 TECHNICAL	
 ANALYSIS	
 ...	
 4	

1.	
 Architecture	
 ...	
 4	

2.	
 CPU	
 Operation	
 ...	
 5	

3.	
 Multicore	
 ...	
 5	

4.	
 Performance	
 ..	
 5	

1.)	
 Multithreading	
 ...	
 6	

2.)	
 Clock	
 Rate	
 ..	
 6	

3.)	
 Drawbacks	
 ...	
 6	

IV.	
 DEMONSTRATION	
 ..	
 6	

1.	
 Overview	
 ..	
 6	

2.	
 Quicksort	
 ..	
 6	

3.	
 Results	
 ...	
 7	

1.)	
 Beefy	
 vs.	
 Lab	
 PC	
 ...	
 7	

2.)	
 Sequential	
 vs.	
 Parallel	
 ..	
 7	

V.	
 STATE-­‐OF-­‐THE-­‐FIELD	
 ..	
 8	

VI.	
 FUTURE	
 TRENDS	
 ..	
 8	

1.	
 Parallelism	
 ...	
 8	

2.	
 GPGPU	
 ...	
 9	

3.	
 Quantum	
 Computing	
 ...	
 9	

4.	
 Efficiency	
 ..	
 9	

VII.	
 CONCLUSION	
 ...	
 9	

REFERENCES	
 ...	
 9	

A.	
 Reflection	
 ...	
 11	

Table of Figures 	

Figure	
 1.	
 Diagram	
 of	
 a	
 microprocessor’s	
 components.	
 ...	
 4	

Figure	
 2.	
 Dual	
 core	
 CPU	
 architecture.	
 ..	
 5	

Figure	
 3.	
 CPU	
 trends	
 over	
 time.	
 ...	
 5	

Figure	
 4.	
 Graph	
 of	
 runtimes	
 by	
 input	
 size	
 and	
 machine/algorithm.	
 ..	
 8	

I. INTRODUCTION	

The field of central processing units is one of

rapid evolution, changing demands and innovation.
The central processing unit, known as a CPU, is an
essential computer component that performs nearly
all of the calculations for the machine. It is called
upon to perform basic arithmetic functions, gene
sequences for the human genome and everything in
between. A task such as mapping the genome
requires a great deal of processing power and would
not have been feasible 25 years ago. The creation of
tasks like this is among the driving forces behind the
fast evolution of the CPU. In order to maintain a
near constant rate of growth, new methods of
increasing CPU processing power are being
developed and incorporated in processors. The
benefits or high performance processing chips are
widespread and impact everyone who uses common
devices such as computers, cellular phones, or
automobiles. Benefits include reducing the waiting
time for tasks to complete, making the advancement
of human knowledge possible, multitasking, or even
playing the latest video game.

II. BACKGROUND	

Computing has been a necessary task for

humanity far before the invention of the modern
computer. Calculations were performed on paper,
with an abacus and mechanical devices in the past.
The purpose of these devices was to perform
computations that were too complex for humans to
do themselves or to perform computations faster than
could be done in our brains.

1. Early	
 Advances	

Early computers required the rewiring of circuits

in order to function, however in the 1940s John Von
Neumann, J. Presper Eckert and John Mauchly came
up with the idea of storing instructions inside the
computer [1]. The device that carried out these
instructions was called the central processing unit.

Among the first major advances in CPU
technology was the introduction of Intel’s 4004
microprocessor in 1971 which could be programmed
to perform many different calculations [1]. A second
important advance was the insertion of cache
Random Access Memory (RAM) between the
microprocessor and main memory. This addition
meant that the microprocessor would be able to
execute at improved speed as it would not need to
wait as frequently while accessing the slower main

memory because its instructions or data could be
stored in the cache RAM [1].

2. Performance	
 Growth	

Throughout the late 20th century, the CPU had

steady and predictable growth. During this time the
method used to increase processing power was to
decrease transistor size, increase the number of
transistors in a CPU and decrease the overall size of
the computer chip. The growth in processing power
over this time had been quite consistent with Moore’s
Law which stated that the number of transistors on a
microchip would double every two years. David
House later adapted Moore’s Law to state that
computer performance would double every 18
months [2].

The measure of performance for CPUs was
generally by their clock speed, such that higher
frequency indicated better performance [2]. In the
1990s microprocessor performance grew by
approximately 60% each year. In the four years that
followed the turn of the century, performance only
grew by 40% each year and in 2004 it increased by
merely 20% [3].

3. The	
 Problem	

As of late 2004, commercially available

processors boasted frequencies up to 3.8GHz [4]. At
this point a marginal increase in clock rate would
have required a substantial increase in energy. It
became apparent that processors’ clock speeds were
reaching a plateau.

This was not due to issues related to transistor
size or number but rather power requirements and
heat dispersion. Increasing CPUs’ frequencies causes
them to require more energy and run at hotter
temperatures [3]. Additional cooling functions to
combat the heat would have been necessary and these
functions would have required even more energy to
power them. Had we continued using the same
method of enhancing performance, it would not be
unrealistic for laptop computers to require expensive
features such as water cooling systems in order to run
at an acceptable temperature [5]. It was time for the
computing world to take a different approach towards
performance.

4. The	
 Solution	

The need to keep up with the expected rate of

performance improvement drove CPU manufacturers
to introduce one of the most dramatic changes that
the microprocessor has seen in its evolutionary
history. Prior to 2006, the computing world ran on
high frequency single-core CPUs. From the humble

beginnings of the 740kHz Intel 4004 processor in
1971 [1] the single-core CPU remained dominant
until manufacturing giants AMD and Intel each put
forward commercial dual-core processors in 2005 [4].

Multicore processors host two or more
processing units, referred to as cores, inside a single
integrated circuit. These cores were not as powerful
as those found in single-core processors but they
generated better overall performance because they
could handle more work by operating in parallel [3].
This is a technique known as multiprocessing.

The introduction of multicore processors was
met with a positive reception by the computing
industry and they were praised for their power-saving
nature as two lower frequency cores consumed less
energy than a single high frequency core. The IEEE
Review noted in September of 2005 that for every
400MHz increase in clock speed, power consumption
would rise by 60% but that dual-core chips provided
a significant performance boost without the need to
run at ruinous clock speeds [2].

5. Challenges	

The shortcomings of multicore processors were

not ignored, as many were quick to point out that
most software was not optimized for dual-core CPUs
so there would be little if any improvement running
applications on dual-core units over single-core ones.
It can be difficult for programmers to write
applications that scale across multiple cores and they
synchronize correctly while ensuring some
calculations were executed in the correct order [6].
Despite this drawback, multicore processors were
still seen as the future of computing. [3] John
Williams, a technical director for AMD,
demonstrated that sentiment with his 2005 statement
that “Multiple cores are the new megahertz.
Multicore will be the transition from brute-force
performance to architectural elegance.”

Hardware is not the only aspect of high
performance computing that is evolving towards
parallelism; software is beginning to be written to be
compatible with the parallel nature of current CPUs
and graphics processing units (GPUs). Writing
software that can be run on multiple threads is a
challenge currently facing the computing industry
[3].

III. TECHNICAL	
 ANALYSIS	

1. Architecture	

The physical configuration of functional units

within a microprocessor varies from one design to

another; however the collection of parts is quite
similar across the spectrum of microprocessors.
Figure 1 shows a generic microprocessor with the
different units labeled.

	

Figure	
 1.	
 Diagram	
 of	
 a	
 microprocessor’s	
 components.

There are several generic terms that should be
understood before individual devices are explained.
The first of these is a register, which is very small
and very fast memory housed within the CPU. Cache
is local memory that serves to reduce the waiting
time for data stored in RAM also known as main
memory.

The control unit is the device that directs the
flow of data within the processor and it sends
instructions to the execution unit. There are several
other devices housed within the control unit. Among
these is the sequencer which may also be called the
monitor and logic unit. It synchronizes the execution
of instructions with the clock rate and sends control
signals which instruct the components involved in
executing an instruction. Additionally, the program
counter (or ordinal counter) is a register stored within
the control unit and it holds the registry address of
the instruction currently being performed. The
instruction register is a small amount of memory in
the control unit and contains the next instruction to be
executed [7].

The execution unit is where the calculations take
place within the CPU. This element is also known as
the processing unit and it takes directions from the
instruction unit. It is composed of the arithmetic and
logic unit (ALU), floating-point unit (FPU), status
register, and accumulator register. The ALU carries
out basic mathematic calculations and logic
functions. When the CPU needs to add, subtract,
multiply, divide, or perform AND, OR, NOT, and
XOR functions the ALU is the device that completes
the task. The floating-point unit is similar to the ALU
in that it carries out mathematic operations, however

what distinguishes the FPU is its ability to perform
these on floating point numbers, which are too
complex for the ALU to handle. The status register is
memory that holds system status indicators, or flags,
for cases where a carryover in needed, the result is
zero, and when there is overflow. The accumulator
register is where the result of mathematic or logical
operations is stored [7]. Both of these registers are
contained in the box labeled registries in Figure 1.

	

Figure	
 2.	
 Dual	
 core	
 CPU	
 architecture.

The bus management unit manages the flow of
incoming and outgoing information for the CPU. It is
labeled as the input-output manager in Figure 1 and it
interfaces with main memory. The last component to
be discussed is cache memory. Level one (L1) cache
is directly integrated into the processor whereas level
two (L2) cache is separate from the processor but still
located within the microprocessor. In multicore
processors the L2 cache is often shared between two
processors, as seen in Figure 2, which can lead to
contention for resources. L2 cache serves as an
intermediary between the processor and main
memory. L1 cache is slower and larger than a register
but it is smaller and faster than L2 cache which in
turn is smaller and faster than main memory [7].

2. CPU	
 Operation	

A CPU performs four primary steps over the

course of its operation: fetch, decode, execute, and
writeback. A sequence of these instructions is known
as a program. These instructions are stored in the
program memory and accessed by the fetch
command. The instruction retrieved by the fetch
determines what the processor does next. This
instruction is then decoded into smaller pieces that
will have meaning to certain components of the CPU.
Once decoded, the CPU will check for operands that

will tell it what to do in the execution stage. During
execution the arithmetic or logical function specified
by the instruction is performed. The final step is the
writeback in which the result of the execution stage is
stored into memory [7].

3. Multicore	

A multicore processor is one in which multiple

complete CPUs are placed onto a single integrated
circuit die with significant parts of their memory
hierarchy. Multicore chips do not run at as high of a
clock speed as a single core chip yet their overall
performance is increased due to the augmented
number of processing cores [3]. This gives the
microprocessor true multitasking ability and the
multicore chips require less power and cooling
because their cores operate at lower frequencies.

4. Performance	

This section explains how CPU performance has

been able to growth throughout their period of
dramatic change. Figure 3 illustrates CPU trends
through the mass conversion to multicore processors.
The green line represents the number of transistors in
CPUs, which is increasing at a steady rate in
accordance with Moore’s Law.

	

Figure	
 3.	
 CPU	
 trends	
 over	
 time.

The blue line shows the clock speeds over time.
Clock speeds are still approximately what they were
in 2005. Instead of increasing the speed for greater
performance, manufacturers have taken to adding
more cores. This also accounts for why the number of
transistors is growing consistently. Instead of
crowding more transistors into each core, the number

of transistors can be doubled by adding a second
core.

The lighter blue line is the power required to
operate the CPU which appears to have stabilized
along with the clock speeds. The performance per
clock cycle is the purple line which also evened out
with clock speeds. Individuals who desire a greater
clock speed have an option to overclock their CPUs
which involves modifying the hardware settings so
the clock speed is higher than what the manufacturers
sold it at.

1.) Multithreading
Multiprocessing was not the only technique

utilized to gain a performance boost. Multithreading
technology allows a processor to keep multiple
hardware threads on the chip and ready for execution.
The threads will share resources and the idea behind
this is to maximize the overall throughput without
duplicating the existing resources.

Most manufacturers design these chips to issue
instructions from several threads each cycle rather
than switching between the threads on a core. This
process is known as simultaneous multithreading and
will cause an operating system (OS) to identify twice
as many physical processors as actually exist [7].
Like using multiple cores, multithreading is also
prone to competition for cache memory and time
executing on the processor. Both multiprocessing and
multithreading are forms of parallelism.

2.) Clock	
 Rate	

Clock rate was discussed earlier as a common

measure of a CPU’s processing power. This is
because the clock rate is the speed at which a CPU
executes instructions measured by clock cycles per
second which gives a value in hertz. Thus, the higher
clock speed indicates better performance because a
CPU would be able to execute more instructions per
second.

In the past, clock speeds were able to increase
rapidly, as predicted by Moore’s Law, due to the
inclusion of more transistors in processors as they
were becoming increasingly smaller [3]. With the
introduction of multicore CPUs the clock speeds
began to drop however the number of transistors in
CPUs continued to rise.

Many CPUs today have the ability to temporarily
increase their clock speed during computationally
intensive tasks [8]. This can be thought of as a type
of ‘selective overclocking.’ It is not counter-
productive towards finding alternative techniques for
performance enhancement because rather than
increasing the clock speed outright, this method

normally operates at a lower and more efficient
frequency and only increases it on an as-needed
basis.

3.) Drawbacks	

The multicore method is not without its

weakness. The ability for a single program to take
advantage of multiple processors is based on whether
or not it was written optimized for parallelism [3]. As
long as the serial portion of a program is kept small
then the larger number of simple cores is
advantageous, however if a significant portion of it is
serial then fewer and more complex cores would be
desired. A single core processor uses brute force,
which many multicore processors do not have, to
execute serial programs. Another drawback is that
multiple cores may be competing for the same
resources such as L2 cache [9].

IV. DEMONSTRATION	

1. Overview	

The demonstration we developed aims to show

that with parallelization CPUs experience a
performance boost over serialized programs. The
quicksort algorithm was chosen for the testing
portion of the prototype. It was coded in C++ with
the addition of OpenMP for the parallel version of the
program. Each program was run with a randomly
generated input that was stored into arrays of sizes 25,
210,215, 220, and 221 which was the largest data set that
could be used without causing a core dump.

The testing was conducted on a computer from
St. John’s University’s Linux lab using a dual core
2.40Ghz CPU and then it was repeated on the
institution’s supercomputer ‘Beefy’ which has two
quad core 2.67Ghz processors. The data collected
were the runtimes taken to sort the input list and an
average of five outputs was used for each program at
each size and on each machine. Taking an average of
five outputs allowed us to ensure consistency in the
results and integrity of the data.

Our predictions prior to the experiment were that
Beefy would complete the algorithm faster than the
Linux lab computer and that the parallel version of
the algorithm would finish more quickly than the
sequential version.

2. Quicksort	

Quicksort follows a divide-and-conquer method

which includes three phases. The first phase splits the
problem into smaller sub-problems of relatively equal
size. The second phase solves the sub-problems and

the last phase merges the solutions from phase two in
order to achieve the solution to the original problem.

The quicksort algorithm has best case runtime of
O(n log n) which is impressive as this is also the
average runtime. The worst case runtime completes
in O(n2) which is quite poor but also very uncommon.
Quicksort runs well on random inputs and poorly on
nearly sorted inputs [10].

The sorting method required that a pivot value be
chosen from the input. All elements that were smaller
than the value of the pivot were moved to its left side
and all larger elements were moved to its right. Pivot
selection was important to ensure that the two
resulting sub-arrays were of approximately equal
size. The technique used to choose a pivot location
was to consider the first, middle, and last elements
from the input and use the median of the three values
as the pivot.

Once the pivot was selected, it was moved to the
far right end of the array for the partitioning portion
of the process. The algorithm worked from the left
end towards the right. Two position variables that we
will call i and j were initialized with their values as
the position of the leftmost element. Variable i was
incremented until it has traversed the entire array
while j served as a position marker. If i encountered
an element whose value was less than the pivot’s, it
exchanged that element with the element at position j
and j was incremented. Once the array had been
traversed by i, the pivot was exchanged with the
element at position j and all of the elements to the left
of the pivot were less than it and all the elements to
the right were greater.

Then quicksort was applied recursively on the
sub-array from the leftmost element to the pivot
index -1 and on sub-array from pivot index+1 to the
rightmost element. This was repeated while the
rightmost element of a sub-array was greater than the
leftmost of the sub-array, or while the sub-array was
greater than one element.

Code for parallelization, using OpenMP, was
cast around quicksort’s recursive calls to itself
because once the elements were sorted around the
pivot the two sides remained independent of one
another until the algorithm’s completion.

3. Results	

1.) Beefy	
 vs.	
 Lab	
 PC	

The hypothesis that Beefy would complete the

quicksort algorithm faster than the lab computer was
shown to be correct. At input sizes of 25 and 210 there
was no time difference between the machines when

rounded to the nearest hundredth of a second, but at
an input size of 220 Beefy ran over a full second faster
than the lab machine. For the sequential and parallel
quicksort, Beefy’s speedups over the lab computer
were approximately 1.29 and 1.41 respectively. On
the largest data set of 221 elements, Beefy finished
over 4 seconds faster than the lab machine both in
parallel and sequential tests which resulted in
approximate speedups of 1.29 for the sequential
quicksort again and 1.36 for the parallel algorithm.
Figure 4 shows that Beefy even completed the
algorithm faster sequentially than the lab computer
could in parallel.

Table	
 1.	
 Demonstration	
 runtimes	
 in	
 seconds	
 and	
 rounded	

to	
 the	
 nearest	
 hundredth.	

Machine & Algorithm
Input Size

2^15 2^20 2^21

Linux Lab Sequential 0.01 5.21 20.47

Beefy Sequential 0.01 4.04 15.85
Linux Lab Parallel 0.02 5.19 16.45

Beefy Parallel 0.01 3.69 12.06

Beefy had a clear advantage in both tests due to
its higher clock speed which allowed it to use more
brute force in sorting the sequential algorithm. It held
an advantage in the parallel test for the same reason
in addition to having six more cores at its disposal
than the lab machine.

2.) Sequential	
 vs.	
 Parallel	

It was predicted that the parallel tests would

typically finish sooner than the sequential ones. At
lower input sizes both algorithms completed too
quickly for any differentiation in the runtimes. The
first difference noted was at input size of 215 when all
the machine and algorithm combinations finished in
0.01 seconds except for the parallel quicksort on the
lab computer. It was surprising that the parallel
algorithm ran slower than the sequential one at this
size, however this occurrence did not repeat. At the
input size of 220 the parallel quicksort on the lab
computer averaged only 0.02 seconds faster than the
sequential algorithm. We had expected to see a
greater difference between the algorithms at this
point. It is possible that other tasks running at the
time had interfered with the tests.

During the testing for the largest input we saw
the result that had been expected. The lab computer’s
parallel algorithm competed over four seconds faster
than its sequential one at that size for a speedup of
approximately 1.24 while Beefy’s finished sorting

over three seconds faster than its corresponding
sequential algorithm with a speedup of about 1.31.

This outcome was predictable because the
workload was distributed amongst the computers’
cores so that portions of the code were executed
simultaneously. Figure 4 shows that both parallel
implementations’ slopes are lower than for their
sequential counterparts between the two largest data
sets. This indicates that with even larger data sets the
speedup for the parallel algorithm would continue to
increase.

A limitation was encountered due to the
implementation of quicksort that was used. This
implementation used a single array that was
constantly being modified and passed rather than
creating sub-arrays with each iteration of quicksort.
The effect this had on the demonstration was that, at
most, two processing cores could be utilized at one
time. The lab computer was unaffected by this
limitation, but for Beefy’s speedup was limited to
two despite having an ideal speedup of eight.

	

Figure	
 4.	
 Graph	
 of	
 runtimes	
 by	
 input	
 size	
 and	

machine/algorithm.

V. STATE-­‐OF-­‐THE-­‐FIELD	

The field of CPU performance is still in the early

stages of one of the most dramatic changes that it has
undergone in its short history [3]. Transitioning to
multicore processors allowed for the continued rapid
growth of microprocessor performance through the
use of parallelization. Increasing processing power
through the addition of CPU cores is a method that
scales well [11] and provides abilities such as true
multitasking. The demand for CPUs with high clock
rates has been addressed both in the natural evolution
of multicore processors and through short-term boost
to the clock rate built into many new processors.

There is also a current focus on writing efficient
software that utilizes CPUs’ multiprocessing ability
and improving parallel programming languages [12].
Several major Internet browsers already include this
feature. The desire for efficiency goes beyond just
software.

In addition to taking advantage of multiple cores
there is an interest in utilizing a GPU’s processing
power to perform some of the calculations for a
system’s CPU [13]. Processor performance is at a
comfortable point in this post-transitional period
where the path of parallelization seems the obvious
route but there is still room for experimentation.

VI. FUTURE	
 TRENDS	

We predict that current trend of placing

additional cores in a microprocessor will continue
over many years while CPUs maintain a relatively
stable clock speed as they have over the better part of
the last decade [14]. Secondly, we think that there
will be an increase in the usage of graphics
processing units (GPUs) assisting CPUs with
computations [15] and interest in quantum computing
will begin to rise as advancements are made in the
area. Additionally, we believe that the field of
supercomputing will begin focusing on more
sophisticated and efficient designs rather than FLOPS
(floating point operations per second) [16].	

1. Parallelism	

The future of CPUs development appears to have

committed to the path of parallelism. Manufacturers
are adding additional cores to CPUs such that quad-
core processors have started to become common.

There is evidence that the number of cores
contained within processors will continue to increase
with time. As early as 2005 Intel was working on
creating 16-core CPUs [3]. Last year, at the
Supercomputing 2010 conference, Intel researcher
Timothy Mattson stated that their 48-core Single
Chip Cloud Computer (SCC) processor could be
scaled over 20 times and produce a 1,000-core
processor. [17] Mattson also states that there is no
theoretical limit to the number of cores that can be
used.

The clock speeds of earlier generations of
multicore CPUs were noticeably slower than their
single-core counterparts. Since then, multicore chips
have caught up in clock speed and experienced the
same plateau. We predict that the dwindling number
of single-core CPUs on the market will disappear [5]
over the next three to five years because multicore
chips can now match their clock speeds.

0	

5	

10	

15	

20	

25	

2^15	
 2^20	
 2^21	

Ti
m
e	

(s
ec
on

ds
)	

Array	
 Size	

RunJme	
 Comparison	

Linux	
 Lab	
 Sequen`al	
 Beefy	
 Sequen`al	

Linux	
 Lab	
 Parallel	
 Beefy	
 Parallel	

2. GPGPU	

A second trend is the combination of CPUs and

GPUs running together in parallel. The director of the
National Center for Supercomputing Applications,
Thom Dunning, believes that GPUs are the future of
supercomputing [15]. Using the immense
computational power of a GPU to perform
calculations for the CPU often results in a significant
speedup.

The results of this method are easily seen in the
capabilities of China’s Tianhe-1A which utilized this
strategy in order to become the top ranked
supercomputer in the world in terms of floating point
operations per second [15].

We expect that many others will follow this
route in order to supplement CPU performance and
that almost all supercomputers built in the next few
years will use this approach.

3. Quantum	
 Computing	

Quantum computing is another direction that is

continuing to be explored however the field is still in
its infancy and is error-prone. The potential to be the
fastest computational method in the world keeps
researchers interested in the idea of quantum
computing [18].

While no quantum computers yet exist, advances
have been made such that an architecture called
RezQu has been developed for a quantum processor.
The architecture is highly scalable and University of
California researcher Erik Lucero feels that his team
is on the verge of actually having a quantum
processor [19].

4. Efficiency	

The computing world is also experiencing a shift

towards parallelism in its software aspect as well as
hardware in an effort for greater efficiency in
addition to performance.

The use of clock speed boosting is an effort to
provide enough processing power while keeping the
overall power consumption down thus making
processors more energy efficient.

Regarding software, the Multicore Association is
seeking to establish standards to assist the coding of
software for multicore chips [6]. Their goal is to
reduce the challenge faced by programmers
attempting to write applications that scale across
multiple processing cores and synchronize correctly
afterwards. The creation of such standards would be
beneficial to the computing community as a whole,
assuming they are implemented well. We anticipate
their completion will facilitate the creation of a wave

of effective parallel applications which coincides
with the overall direction that software coding is
moving towards.

In the realm of supercomputing, it is possible
that the computers’ construction will become more
specific towards the machine’s intended purpose with
a greater focus on efficiency and clever software
designs rather than the number of petaFLOPS it is
capable of [16].

Some members of the computing community are
comparing the petaFLOPS measurement of
supercomputers to only considering the top speed of
an automobile. They put forth the argument that a
Ferrari’s speed advantage over a Volvo station wagon
wouldn’t matter if you needed to take two children to
soccer practice. [16]

VII. CONCLUSION	

The multicore processor was embraced by the

computing world and the ideals of parallelism it
brought with it have become the new standards
within the industry. The shift towards parallelization
is leading towards a new era of high performance
computing that is based on distributed workloads and
efficient coding rather than brute force. The
assortment of techniques for improving CPU
performance and implementing parallelism pave the
way for future processors with greater computational
power and efficiency than those used today.

The results of our demonstration indicate that
parallel programming is advantageous opposed to
sequential. The runtimes in parallel for small data
sets were comparable to sequential times on both
machines tested, but on large data sets the parallel
runtimes were clearly faster. The demonstration also
showed that high clock speeds on CPUs are still
beneficial as Beefy’s average sequential runtime on
the data set of size 221 was 0.60 seconds quicker than
that of the lab computer’s parallel time at the same
size. The runtime difference due to the higher clock
speed of Beefy and its greater potential for running
parallel processes are evidence of the impact that
technological advances have on the field of
performance computing.

REFERENCES	

[1] Davis, Roy. “Microprocessor History (Part 1, The

Basics).” Tech-tips. 22 Nov. 2005.
<http://www.geeks.com/techtips/2005/techtips-
NOV22-05.htm>.

[2] Schauer, Brian. “A Brief History of Microprocessors.”
ProQuest. Sept. 2008.
<http://www.csa.com/discoveryguides/multicore/revie
w2.php>.	

[3] Geer, David. "Industry Trends: Chip Makers Turn to
Multicore Processors," Computer, 38.5 (2005) pp. 11-
13.	

[4] Polsson, Ken. “Chronology of Microprocessors.”
Processor Time Line. 1 Jan. 2011.
<http://processortimeline.info/proc2004.htm>.

[5] Field, David. “The Impact of Multi-core Processors on
Application Performance.” HPCWire. 21 Mar. 2008.
<http://www.hpcwire.com/offthewire/17910484.html>.

[6] Shah, Agam. “Multicore Coding Standards Aim to Ease
Programming.” ACM News. 30 March 2011. 12 April
2011. <http://cacm.acm.org/news/107011-multicore-
coding-standards-aim-to-ease-programming/fulltext>.

[7] Shah, Hemant, “Processor.” Hardware Information.
Blogspot. 14 April 2009. 27 March 2011
<http://hardwaresangli.blogspot.com/2009/04/processor
.html>.

[8] Glaskowsky, Peter. “Explaining Intel’s Turbo Boost
Technology.” CNet News. 28 Sep. 2009.
<http://news.cnet.com/8301-13512_3-10362882-
23.html>.

[9] Angela Sodan, Jacob Machina, Arash Deshmeh, Kevin
Macnaughton, Bryan Esbaugh, "Parallelism via
Multithreaded and Multicore CPUs,"Computer, 20
Nov. 2009. IEEE computer Society Digital Library.
IEEE Computer Society,
<http://doi.ieeecomputersociety.org/10.1109/MC.2009.
377>.

[10] Joseph JaJa, "A Perspective on Quicksort," Computing
in Science and Engineering, vol. 2, no. 1, pp. 43-49,
Jan./Feb. 2000, doi:10.1109/5992.814657

[11] Clark, Jack. “Intel: Why a 1,000-Core Chip Is
Feasible.” ACM News. 29 Dec 2010. 12 April 2011.
<http://cacm.acm.org/news/103399-intel-why-a-1000-
core-chip-is-feasible/fulltext>.

[12] Asanovic, K., Bodik, R., Demmel, J., Keaveny, T.,
Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson, D.,
Sen, K., Wawrzynek, J., Wessel, D., Yelick, K. “A
View of the Parallel Computing Landscape.”
Communications of the ACM. 52.10 (2009) pp.56-67.

[13] Bauer, D., McMahon, M., Page, E. “An approach for
the effective utilization of GP-GPUs in parallel
combined simulation.” Winter Simulation Conference.
(2008) pp. 695-702.

[14] Mark D. Hill, Michael R. Marty, "Amdahl's Law in the
Multicore Era," Computer, vol. 41, no. 7, pp. 33-38,
July 2008, doi:10.1109/MC.2008.209

[15] Crothers, Brooke. “NCSA Director: GPU Is Future of
Supercomputing.” ACM News. 2 November. 2010. 12
April 2011.
<http://cacm.acm.org/opinion/interviews/101045-ncsa-
director-gpu-is-future-of-supercomputing/fulltext>.

[16] Young, Jeffery. “Supercomputers Let Up on Speed.”
ACM News. 8 April 2011. 12 April 2011.
<http://cacm.acm.org/news/107282-supercomputers-
let-up-on-speed/fulltext>.

[17] Clark, Jack. “Experimental Intel chip could scale to
1,000 cores.” ZDNet UK. 22 Nov 2010. 12 April 2011.
<http://www.zdnet.co.uk/blogs/mapping-babel-
10017967/experimental-intel-chip-could-scale-to-1000-
cores-10021129/>.

[18] John Preskill. “Proceedings: Mathematical, Physical
and Engineering Sciences.” Vol. 454, No. 1969,
Quantum Coherence and Decoherence. 8 Jan. 1998. pp.
469-486. <http://www.jstor.org/stable/53176>.

[19] Palmer, Jason. “Quantum computing device hints at
powerful future.” BBC News. 22 March 2011. 12 April

2011. <http://www.bbc.co.uk/news/science-
environment-12811199>.

A.	
 Reflection	

Over the course of this research project I found it

necessary to utilize many of the skills that I
developed over the course of my education.

 The first of these is my ability to do research
and find the types of information that I am looking
for. This ability has been particularly useful in the
communications classes that I had been taking for my
minor. Each of those classes required several
research papers, however none of them were of the
magnitude of this project. In my research for the
communications classes I learned how to utilize the
school’s library’s search functions on their website. It
was quite rare that I would need to use them as a
computer science student so it was fortunate that
another aspect of my education helped me to further
develop that skill.

In addition to research skills, the
communications papers also helped me keep my
writings skills from deteriorating. A typical computer
science class requires little more writing than lab
reports so again I feel that it was beneficial for me to
have taken courses that allow for more creative
writing styles.

Other relevant coursework would primarily
include the algorithms class I took last year in which
I learned about sorting algorithms and I first used
C++ which I wrote in for the demonstration portion
of my project. I also learned a small amount about
coding in parallel with OpenMP during the
algorithms course. I again applied this knowledge to
my demonstration.

Additional experiences that helped me work on
this project include the programming classes I took as
a freshman and sophomore because they helped
prepare me to spend hours in the lab attempting to get
a program to execute correctly. I think that my
problem-solving ability has gotten better during my
education as well. Reflecting on the time I spent
coding my demonstration, I realize that I have
become much more perceptive as to what is actually
happening when my coding is executing correctly or
incorrectly and when it is the latter it has become
much easier to fix than it would have been one or two
years ago.

The writing of this draft also required me to call
upon the coursework that was completed over the
course of this last semester. I used the previous
assignments of the course to help bring the project
together as a whole. The sources of each paper were
revisited during the writing process with the
exceptions of the papers from IEEE which would not
let me view them. The article reviews that were due

at every class period served indirectly as a method of
promoting research as I found on multiple occasions
while looking for an article to review I found one that
was potentially helpful towards some aspect of the
project.

Lastly, this project required me to combine the
research and writing skills I developed outside my
major with the coding and problem solving skills that
I learned within it. The project has broadened my
understanding of a device that I had used every day
and taken for granted.

