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Abstract – High performance computing often requires that algorithms are run on large data sets or that 
other demanding tasks are performed. If we were to use a CPU from 10 years ago to run the operations we 
perform today, the run time would be exponentially longer than they already are. In order to keep run times 
reasonable we must continue advancing our hardware technology. This research will consist of running the 
quicksort algorithm on two different computers to demonstrate the difference in processing power and 
performance between two CPUs. Quicksort will be run under different conditions such as sequentially, in 
parallel, and on data sets of varying sizes to observe the processor’s capabilities under light and heavy 
workloads. The results will consist of run time averages to ensure consistency and they will be graphed for 
analysis. The contributions of modern technology should make themselves apparent and the CPUs’ different 
strengths and weaknesses can be determined. The hypothesized superior performance of the parallel 
quicksort algorithm and the CPUs in SJU’s ‘Beefy’ are the focuses of the study along with the contributions 
given to their performance by technological advances. 
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I. INTRODUCTION	
  
The field of central processing units is one of 

rapid evolution, changing demands and innovation. 
The central processing unit, known as a CPU, is an 
essential computer component that performs nearly 
all of the calculations for the machine. It is called 
upon to perform basic arithmetic functions, gene 
sequences for the human genome and everything in 
between. A task such as mapping the genome 
requires a great deal of processing power and would 
not have been feasible 25 years ago. The creation of 
tasks like this is among the driving forces behind the 
fast evolution of the CPU.  In order to maintain a 
near constant rate of growth, new methods of 
increasing CPU processing power are being 
developed and incorporated in processors. The 
benefits or high performance processing chips are 
widespread and impact everyone who uses common 
devices such as computers, cellular phones, or 
automobiles. Benefits include reducing the waiting 
time for tasks to complete, making the advancement 
of human knowledge possible, multitasking, or even 
playing the latest video game. 

II. BACKGROUND	
  
Computing has been a necessary task for 

humanity far before the invention of the modern 
computer. Calculations were performed on paper, 
with an abacus and mechanical devices in the past. 
The purpose of these devices was to perform 
computations that were too complex for humans to 
do themselves or to perform computations faster than 
could be done in our brains. 

1. Early	
  Advances	
  
Early computers required the rewiring of circuits 

in order to function, however in the 1940s John Von 
Neumann, J. Presper Eckert and John Mauchly came 
up with the idea of storing instructions inside the 
computer [1]. The device that carried out these 
instructions was called the central processing unit. 

Among the first major advances in CPU 
technology was the introduction of Intel’s 4004 
microprocessor in 1971 which could be programmed 
to perform many different calculations [1]. A second 
important advance was the insertion of cache 
Random Access Memory (RAM) between the 
microprocessor and main memory. This addition 
meant that the microprocessor would be able to 
execute at improved speed as it would not need to 
wait as frequently while accessing the slower main 

memory because its instructions or data could be 
stored in the cache RAM [1]. 

2. Performance	
  Growth	
  
Throughout the late 20th century, the CPU had 

steady and predictable growth. During this time the 
method used to increase processing power was to 
decrease transistor size, increase the number of 
transistors in a CPU and decrease the overall size of 
the computer chip. The growth in processing power 
over this time had been quite consistent with Moore’s 
Law which stated that the number of transistors on a 
microchip would double every two years. David 
House later adapted Moore’s Law to state that 
computer performance would double every 18 
months [2].  

The measure of performance for CPUs was 
generally by their clock speed, such that higher 
frequency indicated better performance [2]. In the 
1990s microprocessor performance grew by 
approximately 60% each year. In the four years that 
followed the turn of the century, performance only 
grew by 40% each year and in 2004 it increased by 
merely 20% [3]. 

3. The	
  Problem	
  
As of late 2004, commercially available 

processors boasted frequencies up to 3.8GHz [4]. At 
this point a marginal increase in clock rate would 
have required a substantial increase in energy. It 
became apparent that processors’ clock speeds were 
reaching a plateau.  

This was not due to issues related to transistor 
size or number but rather power requirements and 
heat dispersion. Increasing CPUs’ frequencies causes 
them to require more energy and run at hotter 
temperatures [3]. Additional cooling functions to 
combat the heat would have been necessary and these 
functions would have required even more energy to 
power them. Had we continued using the same 
method of enhancing performance, it would not be 
unrealistic for laptop computers to require expensive 
features such as water cooling systems in order to run 
at an acceptable temperature [5]. It was time for the 
computing world to take a different approach towards 
performance. 

4. The	
  Solution	
  
The need to keep up with the expected rate of 

performance improvement drove CPU manufacturers 
to introduce one of the most dramatic changes that 
the microprocessor has seen in its evolutionary 
history. Prior to 2006, the computing world ran on 
high frequency single-core CPUs. From the humble 



beginnings of the 740kHz Intel 4004 processor in 
1971 [1] the single-core CPU remained dominant 
until manufacturing giants AMD and Intel each put 
forward commercial dual-core processors in 2005 [4]. 

Multicore processors host two or more 
processing units, referred to as cores, inside a single 
integrated circuit. These cores were not as powerful 
as those found in single-core processors but they 
generated better overall performance because they 
could handle more work by operating in parallel [3]. 
This is a technique known as multiprocessing.  

The introduction of multicore processors was 
met with a positive reception by the computing 
industry and they were praised for their power-saving 
nature as two lower frequency cores consumed less 
energy than a single high frequency core. The IEEE 
Review noted in September of 2005 that for every 
400MHz increase in clock speed, power consumption 
would rise by 60% but that dual-core chips provided 
a significant performance boost without the need to 
run at ruinous clock speeds [2]. 

5. Challenges	
  
The shortcomings of multicore processors were 

not ignored, as many were quick to point out that 
most software was not optimized for dual-core CPUs 
so there would be little if any improvement running 
applications on dual-core units over single-core ones. 
It can be difficult for programmers to write 
applications that scale across multiple cores and they 
synchronize correctly while ensuring some 
calculations were executed in the correct order [6]. 
Despite this drawback, multicore processors were 
still seen as the future of computing. [3] John 
Williams, a technical director for AMD, 
demonstrated that sentiment with his 2005 statement 
that “Multiple cores are the new megahertz. 
Multicore will be the transition from brute-force 
performance to architectural elegance.” 

Hardware is not the only aspect of high 
performance computing that is evolving towards 
parallelism; software is beginning to be written to be 
compatible with the parallel nature of current CPUs 
and graphics processing units (GPUs). Writing 
software that can be run on multiple threads is a 
challenge currently facing the computing industry 
[3]. 

III. TECHNICAL	
  ANALYSIS	
  

1. Architecture	
  
The physical configuration of functional units 

within a microprocessor varies from one design to 

another; however the collection of parts is quite 
similar across the spectrum of microprocessors. 
Figure 1 shows a generic microprocessor with the 
different units labeled.  

	
  
Figure	
  1.	
  Diagram	
  of	
  a	
  microprocessor’s	
  components. 

There are several generic terms that should be 
understood before individual devices are explained. 
The first of these is a register, which is very small 
and very fast memory housed within the CPU. Cache 
is local memory that serves to reduce the waiting 
time for data stored in RAM also known as main 
memory.  

The control unit is the device that directs the 
flow of data within the processor and it sends 
instructions to the execution unit. There are several 
other devices housed within the control unit. Among 
these is the sequencer which may also be called the 
monitor and logic unit. It synchronizes the execution 
of instructions with the clock rate and sends control 
signals which instruct the components involved in 
executing an instruction. Additionally, the program 
counter (or ordinal counter) is a register stored within 
the control unit and it holds the registry address of 
the instruction currently being performed. The 
instruction register is a small amount of memory in 
the control unit and contains the next instruction to be 
executed [7].  

The execution unit is where the calculations take 
place within the CPU. This element is also known as 
the processing unit and it takes directions from the 
instruction unit. It is composed of the arithmetic and 
logic unit (ALU), floating-point unit (FPU), status 
register, and accumulator register. The ALU carries 
out basic mathematic calculations and logic 
functions. When the CPU needs to add, subtract, 
multiply, divide, or perform AND, OR, NOT, and 
XOR functions the ALU is the device that completes 
the task. The floating-point unit is similar to the ALU 
in that it carries out mathematic operations, however 



what distinguishes the FPU is its ability to perform 
these on floating point numbers, which are too 
complex for the ALU to handle. The status register is 
memory that holds system status indicators, or flags, 
for cases where a carryover in needed, the result is 
zero, and when there is overflow. The accumulator 
register is where the result of mathematic or logical 
operations is stored [7]. Both of these registers are 
contained in the box labeled registries in Figure 1.  

	
  
Figure	
  2.	
  Dual	
  core	
  CPU	
  architecture. 

The bus management unit manages the flow of 
incoming and outgoing information for the CPU. It is 
labeled as the input-output manager in Figure 1 and it 
interfaces with main memory. The last component to 
be discussed is cache memory. Level one (L1) cache 
is directly integrated into the processor whereas level 
two (L2) cache is separate from the processor but still 
located within the microprocessor. In multicore 
processors the L2 cache is often shared between two 
processors, as seen in Figure 2, which can lead to 
contention for resources. L2 cache serves as an 
intermediary between the processor and main 
memory. L1 cache is slower and larger than a register 
but it is smaller and faster than L2 cache which in 
turn is smaller and faster than main memory [7]. 

2. CPU	
  Operation	
  
A CPU performs four primary steps over the 

course of its operation: fetch, decode, execute, and 
writeback. A sequence of these instructions is known 
as a program. These instructions are stored in the 
program memory and accessed by the fetch 
command. The instruction retrieved by the fetch 
determines what the processor does next. This 
instruction is then decoded into smaller pieces that 
will have meaning to certain components of the CPU. 
Once decoded, the CPU will check for operands that 

will tell it what to do in the execution stage. During 
execution the arithmetic or logical function specified 
by the instruction is performed. The final step is the 
writeback in which the result of the execution stage is 
stored into memory [7].  

3. Multicore	
  
A multicore processor is one in which multiple 

complete CPUs are placed onto a single integrated 
circuit die with significant parts of their memory 
hierarchy. Multicore chips do not run at as high of a 
clock speed as a single core chip yet their overall 
performance is increased due to the augmented 
number of processing cores [3]. This gives the 
microprocessor true multitasking ability and the 
multicore chips require less power and cooling 
because their cores operate at lower frequencies.  

4. Performance	
  
This section explains how CPU performance has 

been able to growth throughout their period of 
dramatic change. Figure 3 illustrates CPU trends 
through the mass conversion to multicore processors. 
The green line represents the number of transistors in 
CPUs, which is increasing at a steady rate in 
accordance with Moore’s Law.  

	
  
Figure	
  3.	
  CPU	
  trends	
  over	
  time. 

The blue line shows the clock speeds over time. 
Clock speeds are still approximately what they were 
in 2005. Instead of increasing the speed for greater 
performance, manufacturers have taken to adding 
more cores. This also accounts for why the number of 
transistors is growing consistently. Instead of 
crowding more transistors into each core, the number 



of transistors can be doubled by adding a second 
core.  

The lighter blue line is the power required to 
operate the CPU which appears to have stabilized 
along with the clock speeds. The performance per 
clock cycle is the purple line which also evened out 
with clock speeds. Individuals who desire a greater 
clock speed have an option to overclock their CPUs 
which involves modifying the hardware settings so 
the clock speed is higher than what the manufacturers 
sold it at.  

1.) Multithreading 
Multiprocessing was not the only technique 

utilized to gain a performance boost. Multithreading 
technology allows a processor to keep multiple 
hardware threads on the chip and ready for execution. 
The threads will share resources and the idea behind 
this is to maximize the overall throughput without 
duplicating the existing resources.  

Most manufacturers design these chips to issue 
instructions from several threads each cycle rather 
than switching between the threads on a core. This 
process is known as simultaneous multithreading and 
will cause an operating system (OS) to identify twice 
as many physical processors as actually exist [7]. 
Like using multiple cores, multithreading is also 
prone to competition for cache memory and time 
executing on the processor. Both multiprocessing and 
multithreading are forms of parallelism. 

2.) Clock	
  Rate	
  
Clock rate was discussed earlier as a common 

measure of a CPU’s processing power. This is 
because the clock rate is the speed at which a CPU 
executes instructions measured by clock cycles per 
second which gives a value in hertz. Thus, the higher 
clock speed indicates better performance because a 
CPU would be able to execute more instructions per 
second.  

In the past, clock speeds were able to increase 
rapidly, as predicted by Moore’s Law, due to the 
inclusion of more transistors in processors as they 
were becoming increasingly smaller [3]. With the 
introduction of multicore CPUs the clock speeds 
began to drop however the number of transistors in 
CPUs continued to rise. 

Many CPUs today have the ability to temporarily 
increase their clock speed during computationally 
intensive tasks [8]. This can be thought of as a type 
of ‘selective overclocking.’ It is not counter-
productive towards finding alternative techniques for 
performance enhancement because rather than 
increasing the clock speed outright, this method 

normally operates at a lower and more efficient 
frequency and only increases it on an as-needed 
basis.  

3.) Drawbacks	
  
The multicore method is not without its 

weakness. The ability for a single program to take 
advantage of multiple processors is based on whether 
or not it was written optimized for parallelism [3]. As 
long as the serial portion of a program is kept small 
then the larger number of simple cores is 
advantageous, however if a significant portion of it is 
serial then fewer and more complex cores would be 
desired. A single core processor uses brute force, 
which many multicore processors do not have, to 
execute serial programs. Another drawback is that 
multiple cores may be competing for the same 
resources such as L2 cache [9].  

IV. DEMONSTRATION	
  

1. Overview	
  
The demonstration we developed aims to show 

that with parallelization CPUs experience a 
performance boost over serialized programs. The 
quicksort algorithm was chosen for the testing 
portion of the prototype. It was coded in C++ with 
the addition of OpenMP for the parallel version of the 
program. Each program was run with a randomly 
generated input that was stored into arrays of sizes 25, 
210,215, 220, and 221 which was the largest data set that 
could be used without causing a core dump.  

The testing was conducted on a computer from 
St. John’s University’s Linux lab using a dual core 
2.40Ghz CPU and then it was repeated on the 
institution’s supercomputer ‘Beefy’ which has two 
quad core 2.67Ghz processors. The data collected 
were the runtimes taken to sort the input list and an 
average of five outputs was used for each program at 
each size and on each machine. Taking an average of 
five outputs allowed us to ensure consistency in the 
results and integrity of the data. 

Our predictions prior to the experiment were that 
Beefy would complete the algorithm faster than the 
Linux lab computer and that the parallel version of 
the algorithm would finish more quickly than the 
sequential version. 

2. Quicksort	
  
Quicksort follows a divide-and-conquer method 

which includes three phases. The first phase splits the 
problem into smaller sub-problems of relatively equal 
size. The second phase solves the sub-problems and 



the last phase merges the solutions from phase two in 
order to achieve the solution to the original problem.  

The quicksort algorithm has best case runtime of 
O(n log n) which is impressive as this is also the 
average runtime. The worst case runtime completes 
in O(n2) which is quite poor but also very uncommon. 
Quicksort runs well on random inputs and poorly on 
nearly sorted inputs [10]. 

The sorting method required that a pivot value be 
chosen from the input. All elements that were smaller 
than the value of the pivot were moved to its left side 
and all larger elements were moved to its right. Pivot 
selection was important to ensure that the two 
resulting sub-arrays were of approximately equal 
size. The technique used to choose a pivot location 
was to consider the first, middle, and last elements 
from the input and use the median of the three values 
as the pivot.  

Once the pivot was selected, it was moved to the 
far right end of the array for the partitioning portion 
of the process. The algorithm worked from the left 
end towards the right. Two position variables that we 
will call i and j were initialized with their values as 
the position of the leftmost element. Variable i was 
incremented until it has traversed the entire array 
while j served as a position marker. If i encountered 
an element whose value was less than the pivot’s, it 
exchanged that element with the element at position j 
and j was incremented. Once the array had been 
traversed by i, the pivot was exchanged with the 
element at position j and all of the elements to the left 
of the pivot were less than it and all the elements to 
the right were greater.  

Then quicksort was applied recursively on the 
sub-array from the leftmost element to the pivot 
index -1 and on sub-array from pivot index+1 to the 
rightmost element. This was repeated while the 
rightmost element of a sub-array was greater than the 
leftmost of the sub-array, or while the sub-array was 
greater than one element. 

Code for parallelization, using OpenMP, was 
cast around quicksort’s recursive calls to itself 
because once the elements were sorted around the 
pivot the two sides remained independent of one 
another until the algorithm’s completion.  

3. Results	
  

1.) Beefy	
  vs.	
  Lab	
  PC	
  
The hypothesis that Beefy would complete the 

quicksort algorithm faster than the lab computer was 
shown to be correct. At input sizes of 25 and 210 there 
was no time difference between the machines when 

rounded to the nearest hundredth of a second, but at 
an input size of 220 Beefy ran over a full second faster 
than the lab machine. For the sequential and parallel 
quicksort, Beefy’s speedups over the lab computer 
were approximately 1.29 and 1.41 respectively. On 
the largest data set of 221 elements, Beefy finished 
over 4 seconds faster than the lab machine both in 
parallel and sequential tests which resulted in 
approximate speedups of  1.29 for the sequential 
quicksort again and 1.36 for the parallel algorithm. 
Figure 4 shows that Beefy even completed the 
algorithm faster sequentially than the lab computer 
could in parallel. 

Table	
  1.	
  Demonstration	
  runtimes	
  in	
  seconds	
  and	
  rounded	
  
to	
  the	
  nearest	
  hundredth.	
  

Machine & Algorithm 
Input Size 

2^15 2^20 2^21 

Linux Lab Sequential 0.01 5.21 20.47 

Beefy Sequential 0.01 4.04 15.85 
Linux Lab Parallel 0.02 5.19 16.45 

Beefy Parallel 0.01 3.69 12.06 

Beefy had a clear advantage in both tests due to 
its higher clock speed which allowed it to use more 
brute force in sorting the sequential algorithm. It held 
an advantage in the parallel test for the same reason 
in addition to having six more cores at its disposal 
than the lab machine.  

2.) Sequential	
  vs.	
  Parallel	
  
It was predicted that the parallel tests would 

typically finish sooner than the sequential ones. At 
lower input sizes both algorithms completed too 
quickly for any differentiation in the runtimes. The 
first difference noted was at input size of 215 when all 
the machine and algorithm combinations finished in 
0.01 seconds except for the parallel quicksort on the 
lab computer. It was surprising that the parallel 
algorithm ran slower than the sequential one at this 
size, however this occurrence did not repeat. At the 
input size of 220 the parallel quicksort on the lab 
computer averaged only 0.02 seconds faster than the 
sequential algorithm. We had expected to see a 
greater difference between the algorithms at this 
point. It is possible that other tasks running at the 
time had interfered with the tests. 

During the testing for the largest input we saw 
the result that had been expected. The lab computer’s 
parallel algorithm competed over four seconds faster 
than its sequential one at that size for a speedup of 
approximately 1.24 while Beefy’s finished sorting 



over three seconds faster than its corresponding 
sequential algorithm with a speedup of about 1.31. 

This outcome was predictable because the 
workload was distributed amongst the computers’ 
cores so that portions of the code were executed 
simultaneously. Figure 4 shows that both parallel 
implementations’ slopes are lower than for their 
sequential counterparts between the two largest data 
sets. This indicates that with even larger data sets the 
speedup for the parallel algorithm would continue to 
increase. 

A limitation was encountered due to the 
implementation of quicksort that was used. This 
implementation used a single array that was 
constantly being modified and passed rather than 
creating sub-arrays with each iteration of quicksort. 
The effect this had on the demonstration was that, at 
most, two processing cores could be utilized at one 
time. The lab computer was unaffected by this 
limitation, but for Beefy’s speedup was limited to 
two despite having an ideal speedup of eight. 

	
  
Figure	
  4.	
  Graph	
  of	
  runtimes	
  by	
  input	
  size	
  and	
  

machine/algorithm. 

V. STATE-­‐OF-­‐THE-­‐FIELD	
  
The field of CPU performance is still in the early 

stages of one of the most dramatic changes that it has 
undergone in its short history [3]. Transitioning to 
multicore processors allowed for the continued rapid 
growth of microprocessor performance through the 
use of parallelization. Increasing processing power 
through the addition of CPU cores is a method that 
scales well [11] and provides abilities such as true 
multitasking. The demand for CPUs with high clock 
rates has been addressed both in the natural evolution 
of multicore processors and through short-term boost 
to the clock rate built into many new processors.       

There is also a current focus on writing efficient 
software that utilizes CPUs’ multiprocessing ability 
and improving parallel programming languages [12]. 
Several major Internet browsers already include this 
feature. The desire for efficiency goes beyond just 
software.  

In addition to taking advantage of multiple cores 
there is an interest in utilizing a GPU’s processing 
power to perform some of the calculations for a 
system’s CPU [13]. Processor performance is at a 
comfortable point in this post-transitional period 
where the path of parallelization seems the obvious 
route but there is still room for experimentation. 

VI. FUTURE	
  TRENDS	
  
We predict that current trend of placing 

additional cores in a microprocessor will continue 
over many years while CPUs maintain a relatively 
stable clock speed as they have over the better part of 
the last decade [14]. Secondly, we think that there 
will be an increase in the usage of graphics 
processing units (GPUs) assisting CPUs with 
computations [15] and interest in quantum computing 
will begin to rise as advancements are made in the 
area. Additionally, we believe that the field of 
supercomputing will begin focusing on more 
sophisticated and efficient designs rather than FLOPS 
(floating point operations per second) [16].	
  

1. Parallelism	
  
The future of CPUs development appears to have 

committed to the path of parallelism. Manufacturers 
are adding additional cores to CPUs such that quad-
core processors have started to become common.  

There is evidence that the number of cores 
contained within processors will continue to increase 
with time. As early as 2005 Intel was working on 
creating 16-core CPUs [3]. Last year, at the 
Supercomputing 2010 conference, Intel researcher 
Timothy Mattson stated that their  48-core Single 
Chip Cloud Computer (SCC) processor could be 
scaled over 20 times and produce a 1,000-core 
processor. [17] Mattson also states that there is no 
theoretical limit to the number of cores that can be 
used.  

The clock speeds of earlier generations of 
multicore CPUs were noticeably slower than their 
single-core counterparts. Since then, multicore chips 
have caught up in clock speed and experienced the 
same plateau. We predict that the dwindling number 
of single-core CPUs on the market will disappear [5] 
over the next three to five years because multicore 
chips can now match their clock speeds. 
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2. GPGPU	
  
A second trend is the combination of CPUs and 

GPUs running together in parallel. The director of the 
National Center for Supercomputing Applications, 
Thom Dunning, believes that GPUs are the future of 
supercomputing [15]. Using the immense 
computational power of a GPU to perform 
calculations for the CPU often results in a significant 
speedup. 

The results of this method are easily seen in the 
capabilities of China’s Tianhe-1A which utilized this 
strategy in order to become the top ranked 
supercomputer in the world in terms of floating point 
operations per second [15].  

We expect that many others will follow this 
route in order to supplement CPU performance and 
that almost all supercomputers built in the next few 
years will use this approach. 

3. Quantum	
  Computing	
  
Quantum computing is another direction that is 

continuing to be explored however the field is still in 
its infancy and is error-prone. The potential to be the 
fastest computational method in the world keeps 
researchers interested in the idea of quantum 
computing [18]. 

While no quantum computers yet exist, advances 
have been made such that an architecture called 
RezQu has been developed for a quantum processor. 
The architecture is highly scalable and University of 
California researcher Erik Lucero feels that his team 
is on the verge of actually having a quantum 
processor [19]. 

4. Efficiency	
  
The computing world is also experiencing a shift 

towards parallelism in its software aspect as well as 
hardware in an effort for greater efficiency in 
addition to performance. 

The use of clock speed boosting is an effort to 
provide enough processing power while keeping the 
overall power consumption down thus making 
processors more energy efficient.  

Regarding software, the Multicore Association is 
seeking to establish standards to assist the coding of 
software for multicore chips [6]. Their goal is to 
reduce the challenge faced by programmers 
attempting to write applications that scale across 
multiple processing cores and synchronize correctly 
afterwards. The creation of such standards would be 
beneficial to the computing community as a whole, 
assuming they are implemented well. We anticipate 
their completion will facilitate the creation of a wave 

of effective parallel applications which coincides 
with the overall direction that software coding is 
moving towards. 

In the realm of supercomputing, it is possible 
that the computers’ construction will become more 
specific towards the machine’s intended purpose with 
a greater focus on efficiency and clever software 
designs rather than the number of petaFLOPS it is 
capable of [16]. 

Some members of the computing community are 
comparing the petaFLOPS measurement of 
supercomputers to only considering the top speed of 
an automobile. They put forth the argument that a 
Ferrari’s speed advantage over a Volvo station wagon 
wouldn’t matter if you needed to take two children to 
soccer practice. [16] 

VII. CONCLUSION	
  
The multicore processor was embraced by the 

computing world and the ideals of parallelism it 
brought with it have become the new standards 
within the industry. The shift towards parallelization 
is leading towards a new era of high performance 
computing that is based on distributed workloads and 
efficient coding rather than brute force. The 
assortment of techniques for improving CPU 
performance and implementing parallelism pave the 
way for future processors with greater computational 
power and efficiency than those used today.  

The results of our demonstration indicate that 
parallel programming is advantageous opposed to 
sequential. The runtimes in parallel for small data 
sets were comparable to sequential times on both 
machines tested, but on large data sets the parallel 
runtimes were clearly faster. The demonstration also 
showed that high clock speeds on CPUs are still 
beneficial as Beefy’s average sequential runtime on 
the data set of size 221  was 0.60 seconds quicker than 
that of the lab computer’s parallel time at the same 
size. The runtime difference due to the higher clock 
speed of Beefy and its greater potential for running 
parallel processes are evidence of the impact that 
technological advances have on the field of 
performance computing.   
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A.	
   Reflection	
  
Over the course of this research project I found it 

necessary to utilize many of the skills that I 
developed over the course of my education. 

 The first of these is my ability to do research 
and find the types of information that I am looking 
for. This ability has been particularly useful in the 
communications classes that I had been taking for my 
minor. Each of those classes required several 
research papers, however none of them were of the 
magnitude of this project. In my research for the 
communications classes I learned how to utilize the 
school’s library’s search functions on their website. It 
was quite rare that I would need to use them as a 
computer science student so it was fortunate that 
another aspect of my education helped me to further 
develop that skill. 

In addition to research skills, the  
communications papers also helped me keep my 
writings skills from deteriorating. A typical computer 
science class requires little more writing than lab 
reports so again I feel that it was beneficial for me to 
have taken courses that allow for more creative 
writing styles.  

Other relevant coursework would primarily 
include the algorithms class I took last year in which 
I learned about sorting algorithms and I first used 
C++ which I wrote in for the demonstration portion 
of my project. I  also learned a small amount about 
coding in parallel with OpenMP during the 
algorithms course. I again applied this knowledge to 
my demonstration.   

Additional experiences that helped me work on 
this project include the programming classes I took as 
a freshman and sophomore because they helped 
prepare me to spend hours in the lab attempting to get 
a program to execute correctly. I think that my 
problem-solving ability has gotten better during my 
education as well. Reflecting on the time I spent 
coding my demonstration, I realize that I have 
become much more perceptive as to what is actually 
happening when my coding is executing correctly or 
incorrectly and when it is the latter it has become 
much easier to fix than it would have been one or two 
years ago.  

The writing of this draft also required me to call 
upon the coursework that was completed over the 
course of this last semester. I used the previous 
assignments of the course to help bring the project 
together as a whole. The sources of each paper were 
revisited during the writing process with the 
exceptions of the papers from IEEE which would not 
let me view them. The article reviews that were due 

at every class period served indirectly as a method of 
promoting research as I found on multiple occasions 
while looking for an article to review I found one that 
was potentially helpful towards some aspect of the 
project. 

Lastly, this project required me to combine the 
research and writing skills I developed outside my 
major with the coding and problem solving skills that 
I learned within it. The project has broadened my 
understanding of a device that I had used every day 
and taken for granted.  


