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Abstract—Mobile health is positioned to aid the health
care system by offering the feedback of a physician without
consultation. The purpose of this paper is to analyze
artificial neural networks (ANNs) as a viable option in
mobile health applications to create automated medical
diagnostics. To determine the likelihood of such algorithms,
ANNs were reviewed to see how they fair as classification
models for replicating clinical diagnostics. It was found
that several ANN’s already existed for such diagnostics and
performed well enough to be of aid to physicians. Based
on these accurate performances, research on ANN’s, driven
by the popularity of smartphone health applications, could
produce automatic medical diagnostics for patients outside
the clinic.

1 INTRODUCTION

Over the last decade, mobile health (mHealth) has
been an expanding field of electronic health (eHealth).
eHealth is an umbrella term encompassing any health
care practices aided by electronic processes or commu-
nication, while mHealth revolves around the same prac-
tices but is fixed on mobile phones and other wireless
technology. The field has left an impact on the health
sector, producing remote monitoring technologies such
as mobile trackers for cardiac activity, glucose levels, ex-
ercise, calorie intake, and sleep cycles. Though still in its
infancy, mHealth is poised to become an asset to health
care, physician and patient side alike. The field proposes
new ways to engage health care, allowing patients to take
a more extensive and personalized approach to their own
care through wearable and mobile devices.

2 BACKGROUND

2.1 Before mHealth

Given mHealth’s nature of focusing on out-of-hospital
care, any sort of remote monitoring tools such as a
remote cardiogram were non-existent prior to mHealth.
Instead, telehealth was the primary predecessor, which
concentrated on sending data between hospitals rather
than sending to hospitals directly from patients. Tele-
health is an umbrella term encompassing “any means of
delivering health care and the exchange of health-care
information across distances [7].”

Taking internet and phone lines out of the equation,
telehealth can be dated back to the Middle Ages when
the first health surveillance system was established for
transmitting information about the bubonic plague across



Europe via bonfires. The first instance of modern tele-
health, however, occurred in 1906 when Dr. Willem
Einthoven, inventor of the EKG, developed a way to
transmit his EKG data over telephone lines [8]. This ini-
tial act received widespread attention, given the publics
foreseen applications of this technology with a 1920’s
issue of Popular Science magazine foretelling of “radio
doctors.”

However, these “radio doctors” would never come, at
least not in the sense people were imagining. In fact, the
next incarnation of modern telehealth occurred over forty
years later, brought on via the making of the television,
by a hospital in Nebraska establishing a close circuit
television connection to a hospital one hundred miles
away; allowing for consultations between specialists and
general practitioners [7]. These early forms of commu-
nication were the closest thing to modern mHealth until
progress in remote monitoring was made.

2.2 Initial Phase

Remote monitoring devices are where the origins of
mHealth lie. Beginning in the field of biomedical engi-
neering, researchers became interested in wireless and
sensor technologies which could monitor one’s health at
a distance [20]. Early examples included cardiac, blood
pressure, pulse oximetry, and glucose monitors [1]. Each
device featured wireless telecommunication allowing
data to be transmitted to health care providers or third
parties. While these devices are still in use today, many
lacked features preventing them from being true remote
monitoring systems, or rather, mobile systems that could
follow patients anywhere. Instead these devices were
mostly used in settings such as nursing homes and
veterans hospitals where medical staff were still nearby
to provide assistance. As the devices improved, features
were added such as education on use, reminder alerts,
and means of communication between the patient and
provider: making these devices more user-friendly, but
still not something that could be transported comfortably.
Drawbacks of these products included bulkiness and
limited to only measuring one metric, making it difficult
for a patient to carry multiple devices. It was clear these
devices were built with the intention of being used in the
home setting as opposed to on the go. And while these
devices successfully served their purpose in allowing
patients better care outside the hospital, it wasn’t until
the smart-phone that mHealth became what it is today.

2.3 Catalysts

The early 1990’s are where the first mobile phones
appeared on the market and have since been in a
consistent state of evolution [9]. These devices have

expanded their memory and processing capabilities, in-
cluded geospatial tracking, hosted touch-screen technol-
ogy and accelerometers to track movement [14]. Some
even contained remote monitoring devices with embed-
ded cellular modems to transmit data independent of
the smart-phone’s signal. With all these improvements,
smart-phones now possessed the ability to monitor an
entire series of behaviors [9].

And with advancements in hardware technology low-
ering costs of connection and data plans, the smart-phone
significantly penetrated society, appealing to the entire
age spectrum of its subscribers, from school children
to senior citizens [5]. In the United States alone, there
are an estimated 164 million smart-phone users, with
projections into 2018 estimated to hit 220 million (Fig.
1) [27].

Fig. 1. The number of smartphone users in the United States was
over 160 million in 2014, with projects reaching 220 million by the
year 2018. [27].

Looking to global statistics (Fig. 2), the year 2014
hosted over 2.5 billion smartphone subscriptions, with
projections into 2019 estimating over 5.5 billion sub-
scriptions, more than doubling the number of subscrip-
tions in the next 5 years.

Fig. 2. The number of smartphone users globally was over 2.5 billion
in 2014, with projects reaching 5.5 billion by the year 2019. [22].

Smart-phone popularity, however, isn’t the only cata-
lyst for mHealth technologies.
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Consumer demand has also played a driving role in
mHealth applications. In 2010 there was an estimated
revenue of $104 million, with estimates only two years
later jumping to $1.3 billion, averaging a tenfold in-
crease [21]. In 2013 there were an estimated 97,000
mHealth applications available in app stores [25]. And
estimated revenue from these apps is expected to hit $23
billion by 2017 [21]. While this provides good incentive
for developers to keep an interest in the mHealth market,
consumers also benefit. These apps have enhanced many
aspects of consumer engagement in health care such
as “increasing the flow of information; lowering costs
through better decision-making, fewer in-person visits,
and greater adherence to treatment plans; and improving
satisfaction with the service experience [14].” And while
these benefits are being seen in technologically advanced
countries, developing countries are where these applica-
tions are having the greatest impact.

2.4 A Pressing Need

This new found access to mobile communication in-
frastructures in developing countries has allowed people
in these areas access to communication and information
channels, via simple handsets, which were previously
unavailable [20]. Perhaps the final catalyst for mHealth
development came from work done in these countries
out of necessity for basic access to health care. People
could now contact physicians and medical staff to ask
questions and call for emergency transportation or med-
ical services.

Other advancements such as SMS frameworks (SMS
standing for “short message service,” also known as the
texting component of phones) provided support tools
allowing health workers to manage their client base
more effectively [20]. These services also allowed for
many health advancements such as early infant diagnosis
for HIV, prevention of diseases from mother to child,
birth registrations, diagnostic support, and clinic based
structured reporting: where clinics track patient cases and
keep inventory of medical supplies. Finally, data collec-
tion on PDA’s regarding various health issues such as
immunizations and health demographics also benefited
these countries.

There is a significant shortage of medical staff in
these countries, but mHealth technologies are beginning
to ease the burden. In Africa, for instance, there is an
estimated shortage of 800,000 workers and to make mat-
ters worse, it’s difficult to recruit and retain these health
care workers due to such poor working conditions [18].
In addition patient supervisory and management systems
are often weak or non-existent as well.

Fortunately mHealth technologies are helping to re-
move physical barriers to service delivery and strength-
ening health systems/patient management, unreliable

supply systems, and poor communication. While never
intended to be a driving force for mHealth technology,
this untapped pressing need for better health care ser-
vices in developing countries has quickly spurred an
immediate series of advancements, easing the burden on
the people in these countries and allowing them access
to higher quality care.

2.5 mHealth Today

In fact, access to higher quality health care is becom-
ing the standard to anyone with a smart-phone; with
mHealth apps becoming commonplace on the mobile
market. A study taken from 2013 surveyed the amount
of mHealth related studies conducted the past decade.
Looking at the field in review, the trend was discovered
that initial research projects focused on evaluations of
the mobile technology itself and slowly moved towards
assessments of impact on health outcomes [9]. In these
later studies it was observed that an increase in positive
interventions was made with an overall positive impact
over time. Given these observations, it was concluded
that the field is becoming more structured and coherent.

Taking into consideration the large number of people
carrying smart-phones, paired with the number of health
related applications being downloaded, mHealth has be-
come an integral part of modern health in the past few
years. For example, medical students in Georgetown are
now required to have an iPhone, as surgeons are noting
the platforms usefulness in improving diagnostic skills
and education via its apps. Insurance companies are
promoting mobile technologies from sharing information
about hospitals and physician performance to encour-
aging self-care for patients with chronic conditions not
requiring intense physician care. And pharmacists and
drug stores are using mHealth to bring information to
consumers, offering therapeutic solutions complement-
ing traditional treatments, often saving consumers time
and money.

Fortunately there is the eagerness of those outside
the health care industry to utilize everything being of-
fered, be it accessing information, participating in self-
care via monitoring services, or keeping in touch with
their health care providers [5]. With new sensors, apps,
and other programs being developed that target chronic
conditions, remote monitoring, patient data capture, elec-
tronic records, e-prescribing, and fitness and wellness, it
seems the health care environment is moving towards
a patient-centered care model consisting of individuals
being active participants in managing in their health care,
allowing medical staff opportunities to create higher
quality and highly personalized health care plans [14].
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3 TECHNICAL ASPECTS OF ARTIFICIAL NEURAL
NETWORKS

Only with modern technology has achieving the goals
of mHealth become more feasible. With significant per-
centages of the global population now owning a device
that can harness the applications mHealth has to offer,
the way health care has been conducted is changing.
Control is shifting to the patients giving them the abil-
ity to track their own biometrics and access countless
sources via the internet. But what if something more
could be done? Instead of biometrics being monitored by
physicians who would then analyze the data and inform
the patient of any potential issues, what if the analysis
could also be done right in one’s pocket? What if a
program could take those metrics and make something
of them as soon as they emit a pattern? To accomplish
this, it would seem the next logical step for mHealth is
integration with artificial intelligence and machine learn-
ing programs, offering opportunities to warn patients
of potential risks as soon as possible. Such a system
could be implemented through an artificial diagnostics
program. The program could take in the user’s various
metrics and check them across a database of illnesses
looking for a potential match.

3.1 Components of Artificial Neural Networks

Networks are a prime candidate for such a system.
While various types of networks exists, they all share
two common features: a set of nodes, and connections
between the nodes [12].

3.1.1 Structure: Nodes can be considered computa-
tional units: each node will receive an input, process
that input, and then produce an appropriate output [12].
For example, a node’s behavior may be as simple as
receiving a number, adding a value of one to it, and then
exporting the sum. The connections between these nodes
determine how information should flow throughout the
network; moving in a unidirectional or bidirectional
manner: information can be passed to forthcoming nodes
only, or based on behaviors in the later nodes, infor-
mation may be passed backwards as well. While the
behaviors of the individual nodes may not amount to
much, the interactions between these nodes lead to an
overall behavior of the network. In other words, the
whole becomes greater than the sum of its parts.

Of these networks, the most common type seen for
purposes of medical diagnostics is the Artificial Neural
Network (ANN). The ANN is based on the behavior of
neurons. Referring to Fig.3, the neuron receives signals
through the dendrites and then if the signal received is
strong enough to pass through the threshold, the neuron
activates and sends the signal out the axon. This signal
is then sent to other neurons or synapses in the brain.

Fig. 3. The electrical signals are carried by dendrites into the neuron
which then decides if the signal is strong enough to be carried out by
the axon to other neurons, or left in the cell [12].

Though not entirely similar, these structures act as a
model for artificial neurons. Looking at Fig.4, a similar
setup can be seen. These artificial neurons are made up
of inputs which are multiplied by weights and taken
into mathematical functions which determine whether
the artificial neuron will posses a strong enough value
(or signal) to activate (or pass through the threshold).
If activation is accomplished, the value may be sent to
another node for further computations, or the information
will be passed along to an output node. In more complex
ANNs such as Fig.5 the inputs may pass through hidden
layers which are layers in addition to the input and output
layers and typically host extra computations [26].

Fig. 4. The anatomy of a simple ANN: Inputs are carried into the
network by input neurons which are then manipulated by weights and
carried to output neurons which decide if the values are high enough
(or strong enough) to be outputted by the network [26].

3.1.2 Weights: Weights primarily determine how
strong the inputs will be, the higher the weight, the more
strength the input will be given (the input is multiplied
by the weight). To better explain this, referring back to
Fig.4, two inputs are taken in and multiplied by different
weights, looking only at the first half of this diagram,
say the weight on the left has a value of 2, while the
weight on the right has a value of 5. If both incoming
inputs have a value of 1, then the weight on the right
will produce a higher value (or stronger signal) than the
weight on the left, making the right node (at least for
this first part of the diagram) the prime candidate to be
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outputted.

Fig. 5. Another example of the anatomy of an ANN, the column of
nodes ”A,B,C,D” represent the input layer, ”E,F,G” the hidden layer,
and ”H” the output layer [26].

These weights can also hold negative values as a
method of inhibiting the input, typically seen in neurons
used in later layers of networks [12] [10]. Assume from
Fig.5 a neuron in the latter layer of the network (layer
EFG) is taking in two inputs, one of which is already
coming in with the assumption that it is an unlikely
candidate, it could be multiplied by a negative weight
to ensure that even if the other input doesn’t have a high
value it will still be considered over the unlikely input.

By setting these weights to various values the correct
output can be obtained from select inputs, however, in
more complex networks ranging upwards of thousands of
neurons, calculating the necessary weights would prove
exhaustive.

3.1.3 Biases: Similar to weights, biases also directly
affect the inputs of a network. A bias will always initially
hold a value of one but can also be weighted [24]. The
bias is primarily used in the case of an input value ever
equaling zero.

Fig. 6. A simple ANN without a bias [24].

For example, consider a graph of dots with a line
through them, a network takes in a pair of coordinates (x
and y) and outputs whether the points lie above or below
this line. Now what if the coordinates taken in are (0, 0)?
If Fig.6, for example, takes in the two inputs x = 0 and
y = 0 and then multiplies them by weights, regardless
of what the weights are the sum of the weighted inputs
will always be zero and therefore the output will always
be zero preventing the user from knowing whether the
coordinates are positive or negative (or above or below
the line). A bias can remedy this situation (see Fig.7)
when a weight of 1 is added to both the x and y inputs
allowing the weights to still have an effect on the inputs
and decide whether the coordinates (0, 0) lie above or
below the line.

Fig. 7. A simple ANN with the addition of a bias [24].

3.1.4 Learning Algorithms: Algorithms can be de-
veloped to adjust the weights to the correct amounts
by a process called “learning” or “training.” These
learning algorithms are modeled after the strengthening
and weakening of synaptic connections in the brain.
Briefly covering the three main paradigms of learning
algorithms, there exist the Supervised, Unsupervised,
and Reinforcement Learning algorithms, each possessing
unique advantages and disadvantages [17].

• Supervised Learning - these algorithms are used
when the system is given inputs as well as the
correct output during training. The network is able
to calculate its margin of error between the correct
output and its actual output and then use that margin
to make corrections to its network by updating its
weights.

• Unsupervised Learning - when training the net-
work, only inputs are given and it becomes the
algorithms responsibility to find patterns within the
inputs provided.

• Reinforcement Learning - in this paradigm the
algorithm receives its inputs and also a “reward”
based on how well the algorithm has performed, the
goal is then for the algorithm to try and maximize
its “reward” through trial-and-error via setting its
weights.

3.1.5 Training Process: Learning algorithms seek to
find the optimum configuration of the ANN which is typ-
ically accomplished by taking three random samples of
the data and producing three independent sets (training,
validation, and test) [23]. Referring to Fig.8 may help
provide a better understanding of how these algorithms
train the network.

Fig. 8. Sample data is taken from the population and then broken
into different sets to be used by the training, validation, and test sets
exclusively [23].

• Training - The training set is used strictly for
what its name implies. It is a set of samples used
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to properly adjust weights to produce the correct
outcome.

• Validation - The validation set monitors the error
on the training set. This is done by verifying that
any increase in accuracy over the training data will
also yield an increase in accuracy on data that
the training set is unfamiliar with. This is done to
avoid overfitting, a flaw in which the training set
simply memorizes test data instead of rules which
govern how the test data should be handled. If the
training sets accuracy increases while the validation
sets accuracy stagnates or decreases, this is a sign
that the network has become overfit. This cycle of
moving between the training and validation sets will
comes to a halt when the validation set has found
an acceptable margin of error.

• Test - The test set is for testing data which is com-
pletely independent of the training and validation
sets. It takes in weights from the training set which
have yielded the lowest margin of error and uses
them only on new data to test the actual predictive
power of the network.

3.2 Implementation of Artificial Neural Networks

Having covered the basics of ANNs, there are several
types of ANNs and accompanying learning algorithms
already being developed for medical diagnostics. These
programs range from identifying patients with heart
disease to detecting early signs of lung cancer. If proven
to succeed in their proposed operations, these algorithms
could become an integral part of mHealth’s future of
keeping patients outside the clinic just as informed as
those inside.

3.2.1 Feed-forward Neural Network: The feed-
forward neural network has been commonly seen in
medical diagnosis for its strength as a classification
model [3]. This study in particular utilizes the model
for detection of acute nephritis (inflammation of the
kidneys) and heart disease. The Feed-forward design (as
its name implies) only moves information forward. This
model in particular (refer to Fig.9) features the typical
setup of input, hidden, and output layers, with the hidden
layer consisting of twenty neurons to be trained. Since
the hidden neurons in this system are able to learn the
necessary pattern in the training phase, no feedback is
required. These nodes use a transfer function to process
the data they receive from the inputs and then transfer
their processed data to the output neurons for further
processing using another transfer function in each node
of the output layer. The transfer function, represented as

σ(

n∑
j=1

wjxj + bj)

is the product of each input and weight with the bias
then added in [4].

Fig. 9. A feed-forward neural network which diagrams how inputs
are computed in the hidden and output layers. These particular com-
putations can otherwise be referred to as transfer functions [4].

3.2.2 Levenberg-Marquard Back Propagation Algo-
rithm: The network utilizes the Levenberg-Marquard
back propagation algorithm (falling under the supervised
learning paradigm) for the training phase. By feeding
examples of the expected outcome to the algorithm it will
change the networks weights so that after the training
stage it will give the desired output for a particular
input [28].

The back propagation algorithm consists of first set-
ting all the weights in the network to random numbers,
for example, a range of -1 to +1. The next stage known
as the forward pass applies the inputs and calculates
the output which is unlikely to be close to the target
output since the weights are random. However, the error
of each node is then calculated from the equation Target
Output — Actual Output. This error is then used to
change the weights in the network so that the margin of
error will decrease. Once the margin of error has stopped
decreasing this process will cease as the algorithm has
reached its minimal error.

The Levenberg-Marquard Back Propagation Algo-
rithm hosts several deviations from the standard back
propagation algorithm. One of these is the shift to
Newton’s method for finding the minimum of a non-
linear function, a method which requires finding the
functions critical points at which

5f(x) = 0

While this method is faster and more accurate, it can
only be utilized when error is near minimum [19]. This
alteration ensures the performance function will always
be reduced upon each iteration of the algorithm.

3.2.3 Results: The data used for detection of acute
nephritis consisted of a temperate range between 35 and
42 degrees Celsius (since patients with acute nephritis
typically run a temperature close to 40). And five yes or
no questions:

• Occurrence of nausea?
• Lumbar pain?
• Urine pushing (Continuous need for urination)?
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• Micturition (urination) pains?
• Burning of urethra, itch, swelling of urethra outlet?

The dataset consisted of 120 patients where 90 samples
were used in training the network and 30 were used in
testing the network.

Results from the simulation classifying patients as
healthy and unhealthy based on their symptoms were
positive. The simulation was able to classify 99% of
the cases in the test correctly, such a high accuracy
supports the notion that this model would be useful when
detecting patients with acute nephritis.

The same type of neural network was also used for
detecting patients with heart disease. This time, however,
instead of symptoms, a database of 267 Single Proton
Emission Computer Tomography (SPECT) images were
used. Patients were classified into “normal” and “abnor-
mal” categories [3]. The database was then processed
to find features or patterns which would indicate an
abnormal heart. Of the 267 samples, 80 were used in
training the network while the other 187 were used in
testing the network.

Upon running the simulation it was found that distin-
guishing between a normal and abnormal heart, based
on the binary feature patterns extracted from the SPECT
images, showed the network performed well in learning
the patterns. For the testing set, the network managed
to accurately classify 95% of the cases. The networks
accuracy proves that a feed-forward neural network
could produce significant results when handling data
presented in SPECT images and that the network could
be useful for identifying patients with heart disease.

3.2.4 Multilayer Feed-forward Neural Network:
ANNs are positioned to be of aid to physicians given
their strengths as classification models. And with new
software emerging, physicians are now being given the
chance to use ANN models in their research without the
complexities of designing their own programs to create
them [11].

A study done for early detection of lung cancer
in patients utilized the Matrix Laboratory (MATLAB)
programming language which was described as “ex-
ceptionally straightforward.” A similar model was used
in comparison to the previous study: where data was
brought into the input layer, further processed in the
hidden layer and output in the final layer. This time the
computations done in the hidden layer were based on
an accumulation of knowledge from years of studying
how an expert uses specific patient data to make the
diagnosis. The primary difference found in this model is
the hidden layer consisted of only four neurons whereas
the previous models contained over twenty.

Again, the back propagation algorithm was used for
training the network, further proving that this is one
of the most successful training algorithms when the

network is focused on classification. However, this par-
ticular algorithm did not utilize the Levenberg-Marquard
deviations as seen in the previous study.

Upon implementing the model the MATLAB language
again received positive marks from the researchers as
it “relieved a lot of the mundane tasks associated with
solving problems numerically, powerful operations could
be performed using just one or two commands, and
included high-level functions for two-dimensional and
three-dimensional data visualization, image processing,
animation, and presentation graphics” as demonstrated
by the detail summations in Fig.10.

Fig. 10. An example of the MATLAB languages ability to generate
three-dimensional graphics based on data provided [11].

The results showed that of the one hundred lung can-
cer data sets collected, with parameters of age, gender,
and frequency for smoking and alcohol consumption, the
algorithm gave over 87% accuracy, quite a bit less than
the previous study. However, the advantage was that the
algorithm would only take a few seconds of execution
time and that modifications would be made to raise its
accuracy in the future.

Although unlikely to stand on its own, the network
in its current state could still prove useful as a source
for physicians to confirm their diagnosis, or to use as
a starting point when first examining a new patient.
And while the accuracy rating did not reach as high
a level as the previous study, the fact that such an
accuracy rating, especially in early stage diagnosis, could
be generated using software not specifically built for
early lung cancer detection is still an impressive feat.
Emphasizing the eased burden of creating such networks
while still maintaining high accuracy, proves ANNs can
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be efficiently implemented in medical research.

4 FUTURE TRENDS

This implementation of ANNs into medical research
represents one of the factors necessary for mHealth to
provide it’s most significant contribution to the health
care system: automated medical diagnostics. Additional
factors such as popularity of smartphone health applica-
tions and biometric tracking will lay the groundwork for
automated diagnostics in the next three to five years.

4.1 Popularity of Smartphone Health Applications

Having previously covered smartphone statistics (refer
to pg. 2), no evidence is necessary to support smartphone
popularity.

With smartphones acting as an attractive platform for
applications, the mHealth market is no exception. With
97,000 mobile health apps across 62 app stores leading
to the top 10 apps generating 4 million free and 300,000
paid downloads each day [6]. These rates are expected
to jump to 1.7 billion health apps being downloaded by
2017, projected to generate $23 billion in revenue (Fig.
11) [13].

Fig. 11. The mHealth market reached almost seven billions dollars in
revenue for the year 2014 with projections estimated to reach twenty-
three billion by the year 2017 [13].

Based on these predictions, global interest in mobile
health applications will be growing in the next 3 years.

4.2 Tracking Biometrics

Many products are being designed and released which
allow for monitoring of a user’s various metrics. The first
product to note is the upcoming Wello. Developed by
Azoi Inc. the Wello is a smartphone case which tracks
various metrics including heart rate, blood pressure,
blood oxygen level, respiration, heart-rate variability
(stress level), temperature, lung functions, and also in-
cludes an ECG [15]. The case features sensors on the
back and sides which record all of this data when thumbs

are placed on the back sensors and index fingers on the
side sensors. Though not yet released, Azoi is claiming
the case will host medical grade accuracy and the ability
to pair up with various smartphone apps to organize the
data.

Another metrics tracking device gaining popularity
is the Fitbit, while the Fitbit has been out for several
years, the developers are refining it to produce more
accurate results: measuring number of steps, distance
traveled, calories burned, and sleep quality [16]. While
the device isn’t tracking the more serious metrics such
as vital signs, these factors still play an important role
in determining the physical state of a user; and metrics
such as sleep quality can be useful when determining
the cause of a particular ailment.

The last product to mention is the AgaMatrix iBGStar
with the ability to monitor glucose levels for diabetes
patients [2]. Again, the product may take a bit of a back
seat given its limitations in only monitoring one metric.
However, the device still serves a strong purpose; giving
those with diabetes easier access to their sugar levels
especially when on-the-go.

These products are not the only devices capable of
these tasks, there exist a myriad of other mobile devices
with the ability to monitor the metrics stated above. And
based on this wide range of products, it can be proven
that the field of tracking biometrics is in good standing.

4.3 Artificial Medical Diagnostics

To review, several studies have already been com-
pleted testing the abilities of artificial intelligence,
specifically ANN’s in the case of medical diagnostics.

The first study featured detection of acute nephritis,
achieving 99% accuracy. Proving the program could be
useful in detecting patients with acute nephritis.

The same program was also used for detecting patients
with heart disease. This time however, the program
referenced a database of 267 SPECT images, achieving
95% accuracy. Proving the same model could be useful
in detecting patients with heart disease.

Finally, the third study was done for early detection
of lung cancer. With results showing the algorithm
gave over 87% accuracy. Again, while this accuracy is
less than the previous study, the researchers utilized a
language which was less optimized for the data as it
was not built specifically for early lung cancer detection.
Therefore, the ability of this versatile language to still
produce a high accuracy rating with ease shows the
language could be an attractive and more common tool
in future medical studies.

With AI programs already being developed specifi-
cally for medical diagnostics, the second component is
also on the right track. With solid support and research
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being conducted in these two areas, it seems inevitable
to combine the two fields.

4.4 Overlap

In addition to the strength of these three factors, per-
haps the best piece of evidence for automated diagnostics
is research being peformed on the subject itself. In New
Delhi, Kanav Kahol along with his engineering team
have already built a prototype for a device called the
Swasthya Slate (translating to Health Tablet) [30]. The
modified android tablet features a medical thermometer,
water-quality meter, heart-rate monitor, an ECG, and
sensors for tracking blood pressure, blood sugar, blood
hemoglobin, urine protein and urine glucose. When sent
off to medical labs for testing, the tablet received positive
feedback, with performance rates as accurate as any
other medical equipment used. As of now, Kahol has
programmed the device to perform 33 diagnostics tests,
among them: HIV, syphilis, pulse oximetry, and troponin.

With the tablet gaining support in New Delhi, its
existence alone is perhaps the strongest piece of evidence
that mHealth will be offering automated diagnostics in
the home setting in next few years.

5 CONCLUDING STATEMENTS

For a field still in its infancy, mHealth has made a
significant impact in health care. From lighting bonfires
to counting calories, mHealth’s overarching goal has
stayed the same: “bring the examination room closer to
the patients” [29]. Studies utilizing ANNs in medical
research have proven there is potential for automated
diagnostics. And the popularity of smartphones, health-
care applications, and biometric trackers are providing
just the incentive needed to encourage further research
which will bring these diagnostics algorithms to users
and patients, wherever they are.
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APPENDIX A
REFLECTION

Several courses come to mind when thinking of how
previous work has helped my performance in this course.
Perhaps the most obvious would be the initial program-
ming courses (150 and 160) as well as the intermediate
200 and 230. Since without the programming knowledge
acquired from them I would have been completely lost
in terms of making any progress with my demonstration
project for this course. The project was based in java
which I learned quite well throughout all the course work
of the computer science curriculum and featured data
structures I had grown familiar with in 200. Using more
specifics examples, the algorithm’s course (338) helped
in my understanding of the various algorithms used in
training the neural networks, while having not having
seen any of the algorithms covered in the course directly
in this project, at least having some sort of familiarity
with them allowed for a faster understanding of how
they worked in comparison to someone who may be
entirely new to the subject. Surprisingly, I also found
the psychology courses I took to be beneficial in working
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on this paper. The ANNs related directly to how neurons
function which was a topic I was all too familiar with
from Perception, so translating that over to ANNs with
weights and biases came as almost an entirely familiar
subject. Focusing less on the material and more on the
structure, my psychology courses also helped with this
project as I had been previously exposed to lengthy
research projects, just of a different subject matter.
Regardless, they helped build more technical writing
skills and how to phrase pieces which include heavy
amounts of data. Earlier courses in my college career
also contributed to this project going all the way back
to First Year Seminar and several Philosophy courses I
took. Both immediately introduced me to lengthy papers
where it was necessary to organize material and build
arguments in a coherent manner. Not to mentioned these
papers also acted as practice for building my writing
skills. Only after having written this is it interesting to
see how influences from outside the department would
aid such specific research in such a positive manner.
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