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Abstract - Thousands of people die every year in
traffic accidents. The goal of intelligent transporta-
tion systems is to make the road a safer place to
drive. My goal is to analyze how has intelligent
transportation systems improved road safety. To
do so, we will look at past, current, and future
intelligent vehicle technologies to evaluate how they
left their mark on improving road safety. Similarly,
I will utilize a LEGO Mindstorms NXT kit to
demonstrate my understanding of how intelligent
vehicles utilize obstacle detection systems to avoid
collisions. Currently, the majority of vehicles on the
road do not utilize intelligent transportation systems.
However, traffic safety is expected to increase as the
number of intelligent vehicles on the road rises. As a
result, intelligent transportation systems are a boon
to the safety and wellbeing of drivers everywhere.
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I. INTRODUCTION

Before the advent of intelligent transportation sys-
tems, thousands of people died every year in traffic
accidents caused by a lack of information and human
negligence. Intelligent transportation systems are com-
prised of new technologies that had been experimented
on for the past 30 years with the goal of improving
traffic safety and vehicle efficiency. These technologies
grant intelligent transportation systems the ability to
scan environmental data in real-time, identify potential
hazards, and communicate with other vehicles or the
driver via alerts or signals. Altogether, intelligent trans-
portation systems are used to assist drivers in making
safe driving decisions.

II. SURVEY OF PREVIOUS INTELLIGENT
TRANSPORTATION SYSTEMS

A. The Birth of Intelligent Transportation Systems

The automobile was the most influential invention
of the 20th century [9], yet it also contained flaws
and hazards that endangered the lives and wellbeing
of millions of people around the world. It is estimated
that about 42,000 Americans die every year in traffic
accidents [9]. Likewise, traffic jams are responsible
for over 3.7 billion lost man hours and “2.3 billion

wasted gallons of fuel” [9]. As a result, scientific efforts
to create transportation systems capable of improving
road safety and vehicle efficiency. Some of the current
research projects in the field of intelligent transportation
systems include: Partners for Advanced Transit and
Highways (PATH), the SafeTrip-21 initiative, the Intel-
liDrive program, the Cooperative Vehicle Infrastructure
Systems (CVIS) project, Complex Embedded Automo-
tive Control Systems (CEmACS), and the Tokyo Smart-
way [4]. Two systems have made considerable progress
in the field of intelligent transportations systems:

• The ARGO project: was a prototype vehicle
safety system capable of rudimentary obstacle and
road detection that could alert the driver of or
maneuver the vehicle around environmental haz-
ards [3].

• The DARPA Grand and Urban challenges: were
contests held by the Defense Advanced Research
Projects Agency (DARPA) in order to progress
research in the field of intelligent transportation
systems [9].

B. The ARGO Project

Figure 1. The ARGO prototype vehicle (from Bertozzi [3]).

Early intelligent transportation systems were capa-
ble of autonomously driving from one pre-determined
destination to another with driver supervision and had
rudimentary systems capable of detecting and avoiding
obstacles and other environmental hazards on the road.
One of the first prototypes of an intelligent transporta-
tion system was the ARGO project. The ARGO project
was an experiment performed by Massimo Bertozzi,
Alberto Broggi, and Alessandra Fascioli. The goal of
the ARGO project was to develop a vehicle safety
system capable of both identifying and avoiding envi-
ronmental hazards through either direct communication
of potential hazards to the driver or by autonomously
maneuvering the vehicle around hazards [3]. In theory,
this system would be able to reduce the total number of
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traffic accidents and deaths if it was incorporated into
the majority of vehicles.

With traffic safety in mind, Bertozzi and his team
developed the GOLD (Generic Obstacle and Lane De-
tection) system using a single Pentium MMX processor
and the Linux operating system [3]. The GOLD system
was able to detect obstacles by processing a pair of
side-by-side images to determine whether or not an
obstacle in a specific region of the image changed
position overtime [1]. The GOLD system also utilized
lane detection by identifying patterns in an image that
were present in road markings [1].

In its first test run, the ARGO vehicle drove au-
tonomously on a 2000km journey over the Italian
highway network. The Italian highway network was
chosen for its “quickly varying road scenarios, chang-
ing weather conditions,” and busy traffic in order to
extensively test the system [3]. Despite encountering
some snags in low-light conditions, the experiment was
considered a success and served as the first milestone
towards intelligent transportation systems.

C. The DARPA Grand and Urban Challenges

Figure 2. Stanley winning the DARPA Grand Challenge (from
Thrun [9]).

The next milestone toward intelligent transportation
systems was the DARPA Grand and Urban Challenges.
The Grand Challenge of 2004 was an autonomous car
race that stretched over 142 miles of the Mojave desert
and had a prize of 2 million dollars to be awarded
to the fastest team to complete it within a 10 hour
time limit [9]. However, no team was able to complete
the course. As a result, DARPA issued the Grand
Challenge again in 2005 with a different 132 mile
long route through the Mojave desert [9]. This time
four competitors were able to complete the challenge
within the 10 hour time limit, which demonstrates that

there must have been a dramatic increase in autonomous
vehicle technology since the last Grand Challenge [9].

Following the success of the Grand Challenge,
DARPA announced the Urban Challenge in 2007. The
Urban Challenge required contestants to traverse a maze
of city roads, empty parking lots, and navigate around
active traffic [9]. This tested the autonomous vehicles
by forcing them to choose their own path through the
city streets and parking lots to their destination [9]. Sim-
ilarly, the robots had to be aware of other vehicles on
the road as potential risks unlike the Grand Challenge.
The success of the Grand and Urban Challenges marks
another two important milestones on the road to fully
autonomous vehicles.

D. Current State of Intelligent Transportation Systems

Despite the advances we have made into intelligent
transportation systems, the majority of them are cur-
rently under development and have not yet been fully
incorporated into current vehicle systems. Some barriers
to full implementation of automated vehicle systems
result in robotic cars not currently performing at the
same level of a human driver and people generally being
uncomfortable with the idea of ceding control of their
vehicle to an artificial intelligence [9]. Sebastian Thrun
proposes that all aspects of an intelligent vehicle system
must exceed current safety thresholds and possess better
user interfaces for greater control before people will feel
comfortable driving an autonomous vehicle [9].

III. TECHNICAL ASPECTS OF INTELLIGENT
TRANSPORTATION SYSTEMS

A. Sensors

All obstacle and road detection system use sensors to
scan their environment for sensory data to then use as
the foundation of their analysis. For the past 20 years,
the speed of computational processors has increased
exponentially allowing for the development of faster
and more accurate sensors [8]. There are two kinds of
sensors [8]:

• Active sensors: detect objects by emitting signals
that measure the distance between the sensor and
the reflecting signal. Active sensors come in three
varieties:

– Radar-based sensors: emit radio waves for
detecting objects.

– Laser-based sensors: emit “electromagnetic
radiation” at high frequencies.

– Acoustic-based sensors: emit ultrasonic
sound waves.

• Passive sensors: utilize vision-based detection sys-
tems to obtain information in “a non-intrusive
way,” but has a higher computational cost than
active sensors.
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Other sensors like Global Positioning Systems (GPS)
can operate a vehicle through its relation to the road,
its heading, and its GPS localization [13]. The benefits
and costs of both active and passive sensor systems
must be weighed against each other to determine which
system best satisfies the growing demand for intelligent
transportation systems.

Figure 3. 3-D scans acquired through laser range finer with 64 scan
lines. Shown here is a single laser scan, along with the corresponding
camera view of the vehicle (from Thrun [9]).

1) Active Sensors: The primary benefit of active sen-
sors is their ability to measure a fixed distance quickly
with minimal computations [8]. For example, radar-
based sensors can detect obstacles 150 meters away
in poor weather conditions (i.e., fog, rain, and snow),
whereas a driver could only see 10 meters ahead in
similar conditions [8]. Meanwhile, laser-based systems
are less expensive and more accurate than radar-based
sensors, but struggle in poor weather conditions and
have higher operational costs [8]. An example of a
laser-based sensor can be seen in Figure 3 where the
reflected laser signals are rendered into a 3-D scan
of the vehicles surroundings [9]. Even though laser-
based systems can accurately detect road boundaries on
two-lane roads, they are unable to do so on multilane
roads without assistance from vision-based sensors [6].
Another downside of active sensors is the interference
that occurs when there is too many vehicles traveling
the same direction with similar active sensors [8].

2) Passive Sensors: Vision-based sensors can more
easily detect and identify lane markings, traffic signs,
and objects than active sensors regardless of road in-
frastructure. As discussed by Sun et al. [8], vision-based
sensors do not suffer interference from other sensors
because of its “nonintrusive” data collection procedures.
Vision-based sensors can also detect vehicles changing
lanes and around curves better than active sensors. How-
ever, vision-based sensors perform poorly in “extreme
weather or off-road conditions.” According to Yenikaya

Figure 4. Vision-based road detection system (from Yenikaya [13]).

et al., Vision-based sensors are also plagued with “high
computational costs” due to continuously changing road
environments [13]. These road environments cause an
image to not contain accurate information for periods
longer than five to ten seconds. However, the scan rate
of passive continues to improve thanks to advances
in computational processors. Passive sensors are also
cheaper to produce than active sensors [8]. As a result,
passive sensors can be inexpensively mounted to both
the front and back of a vehicle to obtain a greater field
of view than active sensors for a similar cost.

3) Sensor Analysis: Based on our previous analysis
of active and passive sensors, it is better to utilize both
types of sensors in conjunction to resolve any short-
comings entitled with using only one type of sensor.
For example, radar-based sensors would be used in off-
road or poor weather conditions to detect oncoming
obstacles, because the optical sensor would be rendered
ineffective in those circumstances [6]. Similarly, the
vision-based sensor wouldnt experience interference in
busy traffic from other sensors and could adapt to
various road conditions [8]. However, the computational
costs associated with using both systems together is
greater than using either one individually [6]. This cost
can be decreased through faster processors and the
development of systems that efficiently incorporate both
types of sensors [6].

The data provided by these sensors is then incorpo-
rated into various lane and obstacle detection algorithms
which all tend to follow a similar pattern. The pattern
for interpreting the raw unstructured data into a usable
road model includes four steps [13]:

1) Preprocessing: sections sensory data into “Re-
gions of Interest (ROI)” to conserve time by not
processing the entire image for each scan and to
eliminate noise.

2) Feature Detection: analyses preprocessed images
to determine if the shapes or lines in the image
belong to real world objects, such as roads or
vehicles.
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Figure 5. The four steps of road model creation (from Yenikaya [13]).

3) Fitting: applies rules to the set the features to
assist in predicting their future location and tra-
jectory.

4) Tracking: analyses the accuracy of the applied
rule set.

This paper will be primarily focusing on the analysis of
preprocessing and feature detection.

B. Preprocessing

The size and locations of the ROI possess different
meanings for lane detection and tracking algorithms.
The lane detection algorithm requires the ROI to be
large enough to contain enough useful information to
be able to identify the location of the roads lane bound-
aries, but not so large that the ROI loses its advantage

Figure 6. “Regions of Interest (ROI): (a) Vanishing point based
(detection mode); (b) area based (detection mode); (c) area based
(tracking mode)” (from Yenikaya [13]).

of saving computational time [13]. This is evident in
Figure 6(b) where the left- and right-hand borders of
the image are excluded from the ROI [13]. Meanwhile,
the lane tracking algorithm has “prior knowledge of the
road geometry,” so tighter boundaries can be imposed
upon the ROI for the possible locations of new lane
edges [13]. Several assumptions about the roads features
must consistently hold true in various road conditions
before any feature can be interpreted. These assump-
tions include [6]:

• road and lane texture
• road and lane width
• road markings with consistent placements and ap-

pearances
• “The road is a flat plane or follows a strict model

for elevation change”
Given these assumptions, a foundation of a priori
knowledge is formed to increase the accuracy of feature
detection [6].

C. Feature Selection
Feature detection can be divided into two steps:

feature selection and feature extraction. Feature selec-
tion translates the ROI from “unrelated pixels” [13]
into features such as “edges, motion vectors, and tex-
tures” [6] to mark the possible locations of vehicles,
objects, and road/lane boundaries. There are three main
road features used to perform feature selection. These
categories include [13]:

5



• Color
• Edge
• Texture

These features are also known as knowledge-based
methods, because they all utilize prior information about
the road environment to predict the location of certain
features [8].

1) Color-based Feature Selection: Research into
color for the purpose of feature detection has been
viewed as a way of harnessing new information that
goes beyond standard grayscale or “monochromatic
imagery” [13]. Some feature detection systems has used
extracted colors from the road and road-markings as a
“model to detect lane boundaries” [13]. Jill Crisman
and Charles Thorpe developed a prototype that could
determine if a selection of pixels belonged to the road by
applying a normal or “Gaussian [(bell curve)] distribu-
tion” to a “six-dimensional [RGB] color space” [8]. This
color space was generated by overlapping the images
of “two closely positioned cameras” set to respectively
capture the shadowed and sunny areas of an image [8].
However, color processing is not commonly used due to
the high computational costs associated with processing
RGB color over grayscale colors [13]. The color pro-
cessor also fails to distinguish between a vehicle and
the lane boundary when their colors are similar [13].

2) Edge-based Feature Selection: The detection of
pronounced vertical and horizontal edges is a strong
indicator for predicting the location of a vehicle or lane
boundaries [8]. However, the accuracy of these edges
can be dubious at times due to the “noisy” nature of
structured roads [13]. For instance, a high contrast is
produced between a vehicle and the road, while shadows
and worn lane boundaries produce a low contrast [13].
In this case, the edges surrounding the vehicle will stand
out in the image, whereas the shadows and worn lane
boundaries do not appear as solid edges [13]. Another
issue occurs when the edge-based identifier includes
unnecessary edges like “trees” and “telephone poles”
in the ROI. These unnecessary edges create noise that
increases computational costs and distracts the feature
extractor from identifying important edges, such as
those belonging to vehicles [13].

Sun et al. proposed “a multiscale [edge-based] ap-
proach which combines subsampling with smoothing”
to provide a more resilient method for predicting vehicle
locations [8]. Sun’s multiscale approach incorporates
four steps [8]:

1) Low pass filtering: generates the “profile” or
rough location of objects in the image (see first
column of Figure 7).

2) Vertical edge detection: is applied to the low pass
profile to generate the “vertical edge map” por-
traying the image’s vertical contours (see second

Figure 7. Multiscale hypothesis generation at three different image
sizes: 90 x 62 (first row), 180 x 124 (second row), and 360 x 248
(third row) (from Sun [8]).

column of Figure 7).
3) Horizontal edge detection: is separately applied

to the low pass profile to generate the “horizon-
tal edge map” portraying the image’s horizontal
contours (see third column of Figure 7).

4) Local maxima and minima detection: is applied
to the combination of the previous two profiles to
generate their “the peaks and valleys” (see fourth
column of Figure 7). These “peaks and valleys”
predict the likelihood of whether or not a vehicle
is present in the image [8].

Sun’s multiscale approach is more resilient to noise,
because it breaks an image down to the “lowest level
of detail” to only display objects with robust structural
features [8]. It is also faster than other edge-based
methods, because it uses “low-resolution images” with
simple structural features for its analysis instead of high-
resolution images with complex structural features [8].

Figure 8. Texture analysis: (a) Original image; (b) refined image
(white fields point to the road, blue fields point outside) (from
Yenikaya [13]).

3) Texture-based Feature Selection: As discussed by
Sun et al. [8], texture segmentation is a commonly
used detection method because of its ability to constrict
“the search area for vehicle detection” based on the
varying textures in the image. For texture segmentation,
entropy measures the intensity or difference between
a pixel and all of its adjacent pixels to determine if
the selected pixel belongs to the same object as its

6



adjacent pixels. High entropy regions are analyzed for
possible objects, because they are more likely to contain
objects than low entropy regions. An example of texture
segmentation can be seen in the refined image for Figure
8(b), where the white section represents the road and the
blue sections represent objects that are not included as
being part of the road [13].

Another method of computing texture analysis uti-
lizes co-occurrence matrices rather than entropy. Sim-
ilarly discussed by Sun et al., a co-occurrence matrix
includes the predicted co-occurrence probabilities of
different pairs of pixels based on their “predefined geo-
metrical and intensity constraints” [8]. These constraints
include “energy, contrast, entropy, and correlation.”
Co-occurrence matrices have better accuracy than the
previous “entropy-based methods” as a result of using
four obstacle detection measurements instead of entropy
exclusively. However, co-occurrence matrices are more
computationally expensive than “entropy-based meth-
ods” due to its additional measurement comparisons.

4) Feature Selection Comparison: In comparison of
the previous three feature selection methods, a combi-
nation of both edge-based and texture-based methods
yields the best feature selection results. Color-based
methods are susceptible to changing environmental
conditions like “illumination” and weather [8]. Both
texture- and color-based methods have higher compu-
tational costs than edge-based methods due to multiple
pixel comparisons [8]. Edge-based methods maintain a
high accuracy rating on structured roads with painted
lane and road markings [13]. They can also quickly
recover from false positive vehicle identifications by
using the aspect ratio of a vehicle as a guideline for
its identification [8]. However, texture-based methods
performs better on unstructured roads than edge-based
methods due to the lack of road markings [13]. As a
result, an algorithm that utilizes texture and edge data
for feature selection would be more accurate than using
either of the two individually [13].

D. Feature Extraction

Feature extraction processes the data it receives from
feature selection to “extract image features of road ar-
eas, road markings, or road boundaries [through] various
filters or statistical methods” [13]. There are two types
of methods used for feature extraction including:

• Appearance- or Area-based methods
• Template- or Edge-based methods
1) Area-based Feature Extraction: As discussed by

Sun et al. [8] and Yenikaya et al. [13], area-based meth-
ods, also known as appearance-based methods, utilize
classification techniques to determine if the features in
the image belong to the categories of either the “road
or nonroad” or a vehicle/nonvehicle. An example of

Figure 9. Area detection: (a) Original image; (b) area detected image
(pure black fields) (from Yenikaya [13]).

this can be seen in Figure 9, where 9(a) represents
the original image, while 9(b) displays “the extracted
road area” as a black region in the image [13]. The
key to developing a strong classifier for an appearance-
based method depends upon how well its training set
performs during its initialization. The training set of
an area-based classifier is composed of features taken
from a list of training images that are then applied to
initialize the probability threshold between two or more
classes (i.e. vehicle vs nonvehicle or road vs nonroad).
The probability threshold is utilized to determine if a
certain feature belongs to one class or another. As a
result, the accuracy of the classifier is dependent on the
quality of the training set. One area-based classifier is
the “Support Vector Machine” [13]. A Support Vector
Machine processes the RGB values of an image to
classify each pixel as belonging to either a road or
nonroad surface. However, Support Vector Machines are
incapable of identifying the class of previously untried
data.

One example of an area-based method involves “us-
ing Gabor filters ‘for the purpose of’ vehicle feature
extraction” [8]. In practice, Gabor filters are individually
applied onto the various subdivided sections of an image
and returns “the mean, the standard deviation, and
the skewness” of each section. These values are then
used to acquire the orientation of the different sections
of texture throughout the image. The various texture
orientations are then employed to locate “strong edges
and lines” that are commonly present in vehicles. Gabor
filters have “an accuracy of 94.81%” while using a
Support Vector Machine as its classifier [8].

2) Edge-based Feature Extraction: As discussed by
Yenikaya et al. [13], edge-based methods, also known
as template-based methods, utilize extracted edge data
to classify certain features as a vehicle or as a road/lane
boundary. Figure 10 provides an example of edge ex-
traction. First, the 10(a) original image is converted into
10(b) an edge map by an edge-based feature selection
process like Canny or Sobel filters. Then, the resulting
edges 10(c) and 10(d) can be processed using a Hough
transform to decipher if the edge data belongs to either
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Figure 10. Edge detection: (a) Original image; (b) edge de-
tected image; (c) and (d) details of the edge detected image (from
Yenikaya [13]).

a vehicle or road/lane boundary. The “standard Hough
transform algorithm” evaluates clusters of pixels to
ascertain if an edge is present in the pixel data [13].
However, standard Hough transforms are not applicable
to grayscale images. As a result, the edge selection tool
has to display the outline of various levels of brightness
(i.e. shadows) with an edge before the standard Hough
transform can process it.

A template proposed by Bertozzi et al. predicted
the location of vehicles on the basis that a vehicle is
contained within “a rectangular bounding box which
satisfies specific aspect ratio constraints” [1]. If an edge
map contained two bottom corners within the specified
size and perspective restrictions, then the algorithm
would proceed to search for the correlating top cor-
ners [8]. Upon locating the top corners, the algorithm
would mark the resulting bounding box as the location
of a vehicle [8]. Despite its fast computational speed,
the algorithm is capable of mistaking distant buildings
and other non-vehicular objects as vehicles because of
its loose bounding box requirements [8].

3) Feature Extraction Comparison: As discussed by
Sun et al. [8] and Yenikaya et al. [13], the union of
an area- and edge-based feature extraction algorithm,
also known as an area-edge-based method, is a more
robust system than using either of the two algorithms
separately. Area-based methods are more accurate than
edge-based methods, because area-based methods use
a classifier training set to predict what a collection of
pixels represent. The same classifier training set requires
a significant amount of computations to run. Therefore,
area-based methods are more computationally expensive
than edge-based methods. However, computational costs
are expected to decrease overtime as processor speeds
continue to increase exponentially. Meanwhile, edge-

based methods depend on road and lane markers to
maintain its accuracy. As a result, poor road conditions
hinder the effectiveness of both edge- and area-edge-
based methods. When combined, an area-edge-based
algorithm can perform edge detection and road area ex-
traction in tandem. One example of an area-edge-based
algorithm used by Tsai et al. could classify a pixel as
belonging to either a “road surface, lane markings, [or]
nonroad object” based on its “smoothness, color, and
lane-marking segmentation” [13]. Having access to both
edge detection and road area extraction simultaneously
allows for greater accuracy at the cost of computational
time due to the total increase in the number of features
used for classification.

IV. DEMONSTRATION

Figure 11. A LEGO Mindstorms NXT robot

My demonstration of these road model creation tech-
niques utilizes a LEGO Mindstorms NXT kit to create
a robot capable of obstacle detection. I chose to use
this as my demonstration because it performs obstacle
detection using sensors and feature detection techniques
that are similar to an intelligent vehicle system. Lego
Mindstorms NXT is a robotics development kit com-
posed of “619 pieces” that can be assembled into a
robot [12]. One of these pieces is an ultrasonic sensor
that is visible at the top of the robot in Figure 11.
This active sensor emits ultrasonic sound waves that are
used to measure the distance between the sensor and its
reflected sound waves. The effective range of this sensor
is 170 cm. If the robot does not receive its reflected
signal, then it marks the distance to the next object as
out-of-range with a value of 255. Actual vehicles would
not use an acoustic sensor because it has less range than
a radar- or laser-based sensor [2].

Another piece of this robot is called the “brick” (See
Figure 12). The brick is the computational processor
of the NXT robot and runs on a java-based language
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Figure 12. A LEGO Mindstorms NXT brick. From( Lejos.com [12])

called LeJOS [12]. I have written a LeJOS program that
enables the robot to perform the following motions:

1) Scan with the ultrasonic sensor to detect any
nearby objects

2) If there are no objects ahead, move forwards
3) Otherwise, stop and turn to the left
4) Repeat steps 1 through 3

The source code for the program:
import lejos.nxt.*;
import lejos.util.*;

public class MoveToOb {

//motor and sensor values
private static final int NORMAL_MOTOR_SPEED = 540;
UltrasonicSensor motionSensor = new UltrasonicSensor(
SensorPort.S1);

int distance = 255;

/**
* Robot drives forward until an obstacle is

* detected, turns left until the obstacle is

* no longer in its path, and then continues

* forward.

* @author rdjones

* @date 4.29.2014

*/
public void MoveToObstacle() {

Motor.A.setSpeed(NORMAL_MOTOR_SPEED);
Motor.B.setSpeed(NORMAL_MOTOR_SPEED);
motionSensor.setMode(1); //Ping

while(!Button.ESCAPE.isPressed()) {

//Scan for objects
motionSensor.ping();
distance = motionSensor.getDistance();

//Is there an object ahead?
if(distance < 45){

//Stop the Robot
Motor.A.stop();
Motor.B.flt();

//Turn Left
Motor.B.rotate(-180);

//Scan to see if object is cleared
motionSensor.ping();

try{
Thread.sleep(250);

} catch (InterruptedException ie)
}
else{ //Drive Forwards
Motor.A.forward();
Motor.B.forward();

}
}

}
public static void main(String[] args) throws Exception {
MoveToOb RunRobot = new MoveToOb();
RunRobot.MoveToObstacle();

}
}

The algorithms that control intelligent transportation
systems are significantly more advanced than the sim-
ple program listed above. However, the NXT robot
possesses the basic functions of an obstacle detection
system. It demonstrates this through its ability to detect
an object and maneuver itself until the object no longer
remains in its path.

V. FUTURE TRENDS

Currently, intelligent vehicle systems are capable of
limited autonomy thanks to “machine learning” method-
ologies which permit them to modify themselves based
on their surroundings. One machine learning system is
the Stanley system used by Stanford’s robot Stanley to
win the DARPA Grand Challenge [9]. The Stanley sys-
tem utilized an “online self-supervised learning system”
to modify its classifier regarding whether a certain piece
of terrain was drivable or not [5]. Stanley and other
machine learning systems are capable of incorporating
new environmental information with previous classifier
data to assist in classifying future occurrences of that
environment [8]. As a result, the Stanley system can
predict whether certain terrains are drivable at even
greater distances [5]. On the other hand, machine learn-
ing systems need to be able to prioritize protecting
the driver during an emergency. For example, a self-
supervised vehicle would engage its emergency brakes
after a sudden and unavoidable obstacle appears rather
than calculating if it could maneuver out of the way in
time [5]. However, machine learning techniques must
acquire even greater accuracy before it can be trusted
for public usage [9].

A. Vehicle Area Networks

Vehicle area networks encourage safe driving envi-
ronments by enabling a cooperative hazard detection
system and by monitoring abnormal driver behavior. A
vehicle area network is a network that enables cooper-
ative communication between the driver, their vehicle,
other nearby drivers, and roadside infrastructure in order
to provide information about both internal and external
hazards [4]. Vehicle area networks have two methods
of communication [4]:
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Figure 13. An example of a vehicle area network (from
Faezipour [4])

• Intra-vehicle communication: between the driver
and their vehicle.

• Inter-vehicle communication: between the
driver’s vehicle, other vehicles, and roadside
infrastructure.

1) Intra-Vehicle Communication: Intra-vehicle com-
munication allows the vehicle to detect the driver’s
current level of fatigue in two ways. One way is through
the compilation of the vehicle’s current “speed, pressure
on the brake or gas pedal, [and] steering wheel rotation”
to determine if the driver is performing abnormally [4].
The other way is by observing the driver’s “behavioral
information,” such as “blink rate, yawning, and head
movements,” to measure the driver’s current level of
alertness [4]. If the driver is confirmed to be physically
unfit to drive, then the vehicle would alert the driver of
his drowsiness in an attempt to revitalize the driver [4].
If the driver persists in not awakening from his stupor,
then the vehicle’s “Cooperative Collision Warning Sys-
tem” (CCWS) [10] would proceed to alert other nearby
vehicles of the driver’s hazardous exhaustion-induced
behavior [4].

Figure 14. A four-link broadcast chain (from Vasilis [10])

2) Inter-Vehicle Communication: The CCWS allows
vehicles to be able to detect hazardous events in their

environment by means of inter-vehicle communication
made possible by vehicle area networks [10]. The
CCWS does this in two ways. First, it has the vehi-
cle responsible for the hazardous behavior broadcast
a warning to other nearby endangered vehicles [10].
Second, the vehicle’s system should always be on alert
for hazardous behavior from other vehicles [10]. Once
a hazardous event is detected, a “broadcast chain” is
assembled from the vehicles surrounding the hazardous
event to warn other drivers in the proximity [10]. The
broadcast chain also limits the number of vehicles
sending alerts. As a result, endangered drivers quickly
receive the alert from the broadcasting vehicle closest to
them and reduces the number of overlapping alerts sent
from other vehicles [10]. Intelligent vehicle systems that
use a CCWS or another similar “co-operative system”
possess a “more reliable and robust” vehicle detection
system than one that does not share information [8]. A
vehicle detection system that has access to the speed and
acceleration of close-by vehicles could more accurately
predict their location [8].

B. Platooning

Figure 15. Comparison of ACC- and CACC-equipped vehicles (from
Willigen [11])

Research has also been invested into Cooperative
Adaptive Cruise Control (CACC), also known as “pla-
tooning,” to increase vehicle efficiency and traffic safety.
Platooning research originated as an attempt to devise a
technology capable of “smooth merging and splitting”
on dedicated highways [7]. To form a platoon, a vehicle
uses its CACC to send radio signals to the vehicle
directly in front of it to ascertain its “ current velocity,
position and acceleration” [11]. Figure 15 displays the

10



current adaptation of this technology in the form of
Adaptive Cruise Control (ACC), which uses a radar
sensor to track the same information as CACC but in
an indirect manner [11]. Meanwhile, CACC requires
both vehicles to be equipped with a radio system so
they can directly synchronize their platoon’s velocity
and acceleration [11]. As a result, CACC is more
accurate than ACC at acquiring this information due
to the direct communication between vehicles. Willem
van Willigen claims traffic stability and throughput will
increase when over 60% of all vehicles possess CACC
technology due to platooning vehicles being in constant
motion [11]. Similarly, vehicles in a platoon can safely
drive within shorter distances of each other since they
maintain similar speeds and acceleration [11]. There-
fore, vehicles in a platoon are less likely to produce
traffic jams or accidents caused by sudden shifts in
speed, and conserve fuel wasted on spontaneous braking
and acceleration.

VI. CONCLUDING STATEMENTS

To this day, intelligent transportation systems con-
tinue to evolve to protect and assist drivers. Early adap-
tations of intelligent transportation systems focused on
the development of rudimentary autonomous vehicles.
These vehicles were capable of detecting obstacles and
lane markings in a road environment, but struggled in
certain environmental conditions such as heavy traffic,
extreme weather, and low light conditions. Current
systems are more resistant to environmental conditions
through the use of multiple sensors, faster processors,
and more accurate obstacle detection algorithms. The
next generation of intelligent transportation systems
will allow for greater synergy between the driver and
their vehicle. For example, drivers can use vehicle area
networks to gain access to useful driving information
including the location of nearby environmental hazards.
As a result, intelligent transportation systems improve
traffic safety by informing drivers of potential threats in
time for the driver to make an informed decision rather
than an uninformed split-second decision.
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APPENDIX

I will now acknowledge all of the people who assisted
me in creating this project. I would first like to thank
Professor Heroux for answering all of my questions
and providing me feedback that allowed me to evolve
my project overtime to its current status. Similarly, I
would like to thank Professor Miller for lending me the
LEGO Mindstorms NXT kit that I used to complete my
demonstration. Professor Miller was always available
to answer my questions about the functionalities of the
NXT system and also provided me with a tutorial on
how to operate its system. I also thank Professor Holey
for teaching me the fundamentals of Java programming
and object-oriented design which were necessary to
complete the project.

I will also reflect upon how Saint John’s University’s
(SJU) Computer Science curriculum gave me the experi-
ence necessary to complete my project. Before coming
to SJU, I knew nothing about the Java programming
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language or object-oriented design. However, I gained
a great amount of Java programming experience after
attending classes like CS200 Data Structures and CS230
Software Development. I put this Java programming
experience to use in my project while writing the
LeJOS program for my NXT robot. It would have been
difficult for me to complete the project without the
Java experience I had received from SJU. I expanded
upon my previous knowledge of the Java programming
language while developing my project by incorporating
new proprietor-based API in the form of LeJOS to write
my program. As a result, I increased my knowledge of
the Java programming language.

I also learned how to collect and incorporate the
scholarly information needed to write my paper through
my senior research project coursework and Professor
Heroux. He taught me how to use websites like LaTex,
Endnote, and the ACM library to compile scholarly
information into a professional document worthy of the
project at hand. I will be able to take this technical
writing knowledge with me as I enter the business world
and apply it to the workplace. I am truly thankful for
all the technical knowledge that I learned from SJU’s
CSCI curriculum and its professors.
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