
1

State of the Field of Artificial Neural Networks
Andrew Mikos

F

CONTENTS

1 Status Quo 1

2 Needs Addressed 1

3 Creation and Development 2

4 Refinement and Advancement 2

5 Current 2

6 Biological Foundations 2
6.1 Neuron Structure and function . . . 2
6.2 Artificial Neurons 3
6.3 Learning 3

7 technical components and composition 4
7.1 Neuron Layers 4
7.2 Feed Forward and Feed back 4
7.3 Neuron Processing 4

8 Perceptron 5
8.1 Multi-Layer Perceptrons 6

9 Adaline 6

10 Image Recognition 7
10.1 Structure 7
10.2 Recognition 7

11 Open Research Questions 7

12 Growing Applications 7
12.1 Banking and Financial Modeling . . 7
12.2 Facial Recognition 8
12.3 Biometrics 8

13 Learning Algorithms 9

14 Biological Possibilities 9

15 Conclusions 9

References 9

Appendix 9

1 STATUS QUO

The idea of a neural network dates all the way back to
the beginning of computers. Even in the early 1940’s,
McCulloch and Pitts had already conceptualized a de-
vice to mimic the way animals process information
[14]. The problem at the time was that computer tech-
nology itself was still very new. Most computers then
couldn’t do anything more then a modern calculator.
Computers continued to develop however, and over
time the standard for programming became functional
based. A programmer would explicitly define the nec-
essary steps to solve a problem and their order, the
machine then takes explicitly those steps, and if the
data is formatted incorrectly, or if the nature of the
problem changes even slightly, the program is no longer
valid. This changed somewhat with the development of
object-oriented programming languages. Different from
functional languages which execute code line by line,
occasionally jumping to other specified locations in the
program, object oriented languages create functions and
object classes which then can be called upon to perform
specific functions. This means that the actual order of
execution of the code can become more dynamic, with
functions called an non-definite number of times before
the conclusion of the program. These changes however
only mean that the code that is already written can be
executed more flexibly, allowing the program to perform
more adaptively. The program itself is still completely
limited to the code as it is written by the programmers.

2 NEEDS ADDRESSED

Neural networks arose out of the desire to create pro-
grams that are adaptive and flexible. This means that
they can be applied to circumstances or problems that
they were not originally designed for. This has many
potential applications, from modeling complex systems
such as weather and financial returns [4], and also
handling facial recognition [11], a problem where the
precise variables required to identify a face are not fully
understood. This level of flexibility in development is a
secondary need served by neural programs, the ability
to process problems where an algorithm is not obvious,
but by giving many examples, the program arrives at
an algorithm itself. This allows programmers to attack
problems that are not completely understood, or address
flexible problems, both areas have a lot of room for
improvement within computer science

3 CREATION AND DEVELOPMENT

The idea of simulating the way in which living an-
imals process data and information existed as early
as the 1940s [14]. These early theories were limited
by the understanding of neuroscience and no actual
products were made. All work was theoretical and their
schematics of neurons were effectively equivalent to
simplified diagrams of modern logic gates, though they
are not capable of as many functions. In 1954 advances
in technology allowed Farley and Clark to simulate a
network of neurons, which grew based on a learning
rule purposed by Donald Hebb. ”The assumption can
be precisely stated as follows: When an axon of cell
A is near enough to excite cell B and repeatedly or
persistently takes part in firing it, some growth process
or metabolic change takes place on one or both cells so
that A’s efficiency as one of the cells firing B is increased”
[9]. These threshold based neuron models were capable
of pattern recognition, albeit inefficiently. In 1958 Frank
Rosenblatt created the Perceptron [8]. This simulation
organized neurons into layers and limited connections
between neurons to adjacent layers. Multiple binary
inputs are fed into summation nodes, the output of
which passes through a threshold gate, which converts
this summed value into a binary output. From there,
a mutable weight, or multiplication factor, operates on
the binary output, and finally, two values are subject to a
comparator gate, the result feeding back to increase the
weight of the most used sub-path. Conventional tests
for pattern recognition involve subset recognition. On
this task, the Perceptron performs somewhat erratically.
While it is possible if it involves negative input values,
essentially not gates, if it includes strictly positive inputs
it falls to luck and the order of pattern presentation
in order to correctly determine between the original
pattern, and the pattern which is a subset of it. In 1960
a model called Adaptive Linear Element was developed
by Widrow and Hoff working at Stanford University
[8]. This device used a least mean squares algorithm
to, based on a given sample filtering process which
serves as a teacher, arrive at an optimal values for the
multiplication factors for a given pattern. This allowed
a network to do more then recognize similar patterns.
It created a process for inputing an optimal pattern,
causing the network to evaluate the similarities as a sort
of optimization problem. This increased the practical
usefulness of neural network models.

4 REFINEMENT AND ADVANCEMENT

While initial neural models were useful for pattern
recognition, eventually the technology stagnated. This
was largely due to the impossibility of modeling exclu-
sive or gates [9], logic gates representing a function that
is true only when one of the two inputs is true, and the
other is false. This problem was due to the nature of the
comparator gates, gates which evaluated the electrical
signal put into the gate compared to the expected value
for true or false, which were only capable of operating

on a dual input-output level while feeding in positive or
negative inputs. In other words the gates were incapable
of discerning the difference between a zero signal and
a negative and positive signal that canceled each other
out which lead to difficulties in constructing the struc-
tures necessary to properly model logical processes [9].
However, these issues were initially glossed over. The
issue was finally resolved by expanding the operation
of the network series beyond simple binary positive or
negative inputs. These included shifting weight factors
to affect individual inputs, as well as allowing negative
weights. This introduced the idea of an inhibitor factor,
expanding on the processing ability of the networks
themselves. These changes promoted multilayer net-
works in order to expand on these concepts. With an
increase in layers, many wondered how the Least Means
Squared rule, which is explained in section 9 would
be applied across such a network. This resulted in the
first Back-Propagation network. This method evaluates
the error rate in each layer, with larger proportionality
effects in the front-most layer, and decreasing towards
the back-most layer closest to the input. These rates are
then used to re-evaluate and reconfigure the weights,
slowly but more precisely arriving at the desired pattern.

5 CURRENT

Modern neural networks use back-propagation tech-
niques to evaluate pattern matching, process control,
decision making and other modeling problems [4],
[15]. This has become the generally accepted method of
constructing a neural net, although the precise process
for teaching and formatting a given neural network
remains specific to the problem itself, as with any sort
of computational method. More recent developments
in recurrent neural networks, which loop-back to the
degree of becoming a dynamic temporal model, have
achieved accolades in recent years, and show promise
for future development.

6 BIOLOGICAL FOUNDATIONS

The original purpose of developing artificial neurons
and networks was to emulate the biological processes
in humans and animals and thus there are many simi-
larities between artificially created neural networks and
biological ones. [17] Because of these similarities and un-
derpinnings, a brief explanation of the biological aspects
will further the understanding of the technical aspects.

6.1 Neuron Structure and function

A neuron cell, Figure 1, is composed of three primary
structures, the cell body, the axon, and multiple den-
drites. The cell body performs standard cellular func-
tions the details of which are unimportant to this topic,
and also produces the chemical agents required for the
reactions that facilitate communication between neuron
cells. The axon is the transmitter of the neuron, conduct-
ing electrical impulses generated in the cell body to other

2

Fig. 1. A Neuron Cell

neurons. The dendrites are the receptors of the signals
transmitted by either other neurons, or specialized cells,
such as the rod and cone cells that form up the retina
of the human eye. These ’sensor’ cells serve to collect
data and pass it along to the neurons composing the
central nervous system [7]. A neuron cell functions by
receiving electrochemical signals to the cell’s dendrites,
which transmit the signal to the cell body. Inside the
cell body, reactions take place that determine whether
or not the neuron initiates a chemical reaction to trigger
a transmission through the cell’s axon [7]. The exact
nature of the chemical reactions and biological processes
are a matter not concerning this topic and are discussed
elsewhere, what is relevant is the process of reception of
input signals, an evaluation of these inputs leading to a
binary yes/no decision, and then the possible transmis-
sion of an outgoing signal. These three processes define
the operation of both biological and artificial neurons.

6.2 Artificial Neurons

Artificial neurons are constructed to adhere to the same
basic structure as their biological counterparts. An ar-
tificial neuron also has three primary components, the
inputs, the body, and the outputs. Also, there exist in
artificial neural networks components that are not full
neurons, but simply input interfaces, similar to the rod
and cone cells mentioned previously. These structures
allow initial input values to be fed to the network.
Artificial neurons as stated function in the same way
as biological neurons; an input signal is transmitted to
the neuron, which receives the signal and, based on a set
of predetermined conditions referred to as a firing rule,
decides whether or not to ’fire’ transmitting a signal.
This signal passes on to other neurons which make
subsequent decisions based on their firing rules and by
compounding many such operations networks of many
cooperating neurons can solve complex problems such
as pattern matching and recognition[14], [8].

6.3 Learning

The goal of creating artificial neural networks is to
emulated the capability of biological neural nets to
learn to solve problems. In creating artificial neural nets,
the objective is to create a computational tool that is
better equipped to handle certain types of problems.
For example, while a human being has little difficulty
sorting between pictures of cats and dogs even as a
child, a computer scientist told to program an algorithm
to allow a computer to do the same is faced immediately
with many difficult questions. First how to classify dogs
and cats from the computer’s point of view, then how
to analyze the images in order to differentiate between
the two. Concepts such as the number of legs, or the
shape of ears or tails are inadequate information for a
computer to make an analysis, as such a device can only
examine the images as arrays of pixels with varying
color intensities. And even if it could, with the many
varieties of cats and dogs, it would be hard to pin down
which features to use to draw the line. Compounding the
issue is that the pictures may be taken from different
angles, or with different lighting, changing the pixel
data without greatly affecting the overall nature of the
image. While it may not be impossible to produce an
algorithm that is able to take all of these variables into
consideration and accomplish the task effectively, the
level of complexity required will likely be significant. Ar-
tificial neural nets attempt to bypass this problem by re-
moving the need to directly compose the algorithm[15].
Just like a living organism, neural nets can be trained
to behave in a particular manner. The exact process
involved varies between different types of neural nets
and is discussed further in 7.3, but the general process
is the same. By using a series of training inputs, the
network creates associative patterns in the connections
between neurons that correlate to the entire collection
of training inputs. Thus the network itself composes
the algorithm by forming associations between inputs
presented in the training phase and the desired output

3

for each given training input[9], [10], [13] Related to the
original example of dogs and cats, the training process
would involve a network with two output neurons, one
for dog, and one for cat. By composing the pixel data
into the input neurons for a series of pictures of dogs and
cats, each presented along with the data for the desired
input, either dog or cat, eventually the neural net builds
up information on the similarities between each set. In
my own research I have conducted a similar experiment
with simple shapes, the findings of which are addressed
in 10.

7 TECHNICAL COMPONENTS AND COMPOSITION

In order to turn several interconnected neurons into a
problem solving tool the neurons need to be properly
organized. These organizational features play role in
the learning processes and execution of the functions
of the neural network itself, beyond the structure of
individual neurons. The most critical of these can be
divided into two groups based on whether they relate to
neuron organization, or processing functions. The con-
cept of layers, feed forward, and feedback structuring
are related to the organization of neurons composing
the network. Learning and firing rules are related to
processing functions.

7.1 Neuron Layers

Neurons in a neural network are organized into layers as
illustrated in Figure 2. These layers divide neurons based
on function. In the most basic of neural networks there
are only two layers, the input layer and an output layer.
In this case, the first layer is directly controlled by input
data. In other words, whether or not this first layer of
neurons fires or not is a preset condition, and by altering
the configuration of these neurons a user controls the
information input into the neural net. The input from
these neurons is passed on to the last layer, the output
layer, and the firing behavior of the neurons in this
layer constitute the results of the neural net’s processing.
For an example of how this process occurs, see 8. In
more complex networks such as the net depicted in
Figure 2 there are one or more intermediate, also know
as hidden, layers which allow the neural net to perform
more complicated logical calculations, as mentioned in
section 4. This process will be further explained in 8.1

7.2 Feed Forward and Feed back

The layers of a neural network, once assembled from
neurons, can be themselves structured in one of two
ways: either consecutively, with each layer taking in-
put from the layer before, closer to the original input
neurons, and outputting to the layer after, closer to
the output neurons, one after another in a stacked
arrangement as displayed in 2. This is referred to as a
feed forward neural net. Alternatively, the layers may be
interconnected without concern for directionality. This
configuration, know as a feed back neural net, produces

Fig. 2. A Three Layer Neural Network [2]

more complex interactions throughout the network be-
cause of the possibility for inputs to feed back upon each
other. This results in a fundamental difference in net-
work behavior; while a feed forward network receives
inputs then computes them as the inputs filter down
through the neurons in each layer eventually arriving
at a definite output, a feed back network constantly
recalculates each neuron’s condition, firing or not, and
any output is valid only at that time. Depending on
whether the network achieved a state of equilibrium or
not, the output of such a network may change several
times or constantly[16], [9] A possible configuration for
a feed back network is displayed in Figure 3. In this
report, all of the neural network formats examined in
detail are examples of feed forward networks, mainly
due to the complexity of operating feed back networks,
as well as the limitations of the experimental tools we
possess.

7.3 Neuron Processing

In order to turn layers of neurons into a computational
tool, the firing of neurons and the passing of signals
between layers needs to be organized constructively.
These signals are controlled by the use of firing and
learning rules. A firing rule is the concrete process by
which a neuron decides based on the inputs it receives
whether or not to fire. Most frequently this rule takes
the form of a Heaviside Function[14] Figure 4, also
know as a unit step function. This is simply to say
that a variety of inputs are reduced to an output of
either 0 or 1, 0 indicating in this case that the neuron
does not fire, a 1 indicating that it does. Thus a neuron
receives inputs from other neurons then combines them,
usually through summation, and then uses its own
firing function to determine the appropriate behavior. In
order for the firing rules of each neuron to function as
expected, the inputs feeding into the neurons need to be
properly calibrated. While the exact process varies from

4

Fig. 3. Feedback Neural Network[3]

Fig. 4. Heaviside Step Function[1]

network to network, examples of which can be found
in figures 9 and 8, the process is always accomplished
via the adjustment of input weights through a learning
rule. A learning rule dictates how input weights are
updated during the training process of a neural network.
An input weight is a decimal number between 0 and
1 assigned to each connection between neurons, and
affects how great an impact the value of that input
affects the calculations of the neuron it is feeding into.
The exact equations vary between different types of neu-
ral networks and will be addressed in each respective
section. During the training process, with each training
input the learning rule determines how to balance the
weights of all of the connections in order to best adapt
the network towards the goal of conforming to the
training patterns, thus affecting the overall behavior of
the network.

8 PERCEPTRON

Perceptrons were the first type of neural network to be
developed and are also one of the simplest. A simple
perceptron is depicted in Figure 5. A perceptron consists

of two layers of neurons, an input layer and an output
layer consisting of a single neuron. The math behind per-

Fig. 5. Perceptron

ceptron learning is based on linear separation of points.
The connections between neurons in a perceptron work
to form a simple linear equation and by adjusting the
slope and intercepts of this line, a perceptron network
learns to separate data into two groups, which is why
only one output neuron is needed. When learning each
test input is like a point plotted on the graph. With the
desired output associated with this point, the perceptron
network can use its current equation to decide whether
or not the point is landing on the side of the line it
is supposed to. If it is not, the line is adjusted so that
it does. The exact nature of these adjustments depends
on the particular learning rule and the learning rate,
with a higher learning rate leading to more dramatic
adjustments. This process continues until every point
of training data is in the appropriate zone as depicted
in 6. This method causes one substantial limitation, and

Fig. 6. Linearly Separable Data

that is that perceptrons are only capable of processing
linearly separable data sets.

5

Fig. 7. Multi-Layer Perceptron

8.1 Multi-Layer Perceptrons
Multi-layer perceptrons overcome the limitation of lin-
early separable data sets by using a more complex struc-
ture of neurons that includes one or more hidden layers,
as well as bias neurons. Multi-layer perceptrons use non-
linear activation functions. The primary firing rules are
sigmoid functions, which allow for varied output func-
tions as opposed to linear or step firing rules. This is the
one of the features that allows multi-layer Perceptrons
to compute data sets that are not linearly separable. The
other reason multi-layer networks are able to overcome
this limitation is a different learning rule. Mult-layer
networks do not use Perceptron learning but instead us
backpropogation. Backpropogation involves calculating
the rate of change of the error based on a given weight.
This is functionally calculating the derivative of the func-
tion of error as a factor of the given weight. Then, the
weight is adjusted relative to the learning rate towards
the direction of the highest gradient of decrease in error.
When this equation is generalized across every weight
in the network, a direction of greatest descent for total
error in the network can be discovered, and all weights
adjusted in this direction[15], [16]. The only problem
with this learning rule is that while it always leads in
the adjustment of weights towards a more favorable
solution, it is impossible to tell whether or not it is the
most favorable solution. It may be possible that the rule
adjusts the weights towards a local minimum, when a
more optimal configuration exists. That drawback aside,
the multi-layer Perceptron is preferable due to its ability
to process a much wider variety of data types.

9 ADALINE

Adaline neural networks were devised shortly after the
invention of perceptrons, well before multi-layer per-
ceptrons were considered, by researchers also interested
in creating an artificial version of a biological neural
network. Adaline neural networks are built around a
series of n inputs X1−n each with a corresponding
weight denoted by W1−n. The singular output is the

summation of each of these weighted inputs in the form
of

Y =

n∑
j=0

XjWj + Θ

Where Y is the output, and Θ is some constant, re-
ferred to as the bias. In other words, this equation is
a mathematical representation of the neural network
itself. To minimize the error, a learning rule called least
mean squared is used. This rule is aimed at reducing
the error in the network to, as the name suggests, the
least mean squared error possible. The least because
error is undesired, mean meaning the average across
all patterns, and squared to treat positive and negative
errors equally, as the original devices used binary +1 or
−1 inputs. Thus for the error E, Y actual, and Y desired

E = (Y actual − Y desired)2

For all Y1→n the training algorithm is then arrived at
through algebraic calculation

Y = XTW = WTX

By substituting this value for Y actual in the error equa-
tion

E = Y desired −XTW = Y desired −WTX

Now, because of the desire to weight positive and neg-
ative error equally, the square of E is used

E2 = Y 2 − 2Y XTW +WTXXTW

This represents the squared error. To arrive at the Mean
Squared error, ξ, the calculations must be applied across
all of the example sets with fixed weights.

ξ = Ex[E2] = Ex[Y 2]−2Ex[Y XT]W +WTEx[XXT]W

Because of the unwieldiness of this statement, Ex[Y XT]
and Ex[XXT] are usually rewritten, in this case as Q
and R respectively

ξ = Ex[E2] = Ex[Y 2] − 2QW +WTRW

When written in this fashion the formula for the Least
Mean Squared Error is more easily recognized as a
quadratic function of the sets of weights [17]. This func-
tion can be plotted on an n+1 dimensional field where n
is the number of weights, with the final axis representing
ξ. By calculating the minimum value for ξ, or a value
within the acceptable margin of error, a point can be
found which the coordinates thereof are the ideal weight
values for the training set. These networks are capable
of computing some nonlinear datasets, but not all. This
depends on the specifics of the equations involved,
and generalizations are difficult. However, the ability to
solve for some nonlinear datasets means that Adaline
networks are more capable the basic Perceptrons, if not
without any drawbacks.

6

10 IMAGE RECOGNITION

One of the most effective demonstrations of neural
networks and their varied strengths, weaknesses, and
applications is image recognition. Image recognition is
a very difficult problem for the reasons explained in the
example of cats and dogs in section 6.3. Despite these
difficulties, image recognition has many applications
and so is still a desirable problem to solve. As mentioned
before, the ability of neural networks to create their own
classification systems makes neural nets particularly apt
for image recognition. We have personally conducted
a degree of research into image recognition neural net-
works using Neuroph Studio 2.8, a Netbeans based IDE
exclusively for creating neural nets.

10.1 Structure
The structure of an image recognition neural network
is based on the number of pixels in the images to be
analyzed. In the tests we performed, we used a standard
of 20x20 pixels in gray scale. This leads to an input
layer of 401 neurons, one for each pixel and one bias
neuron. If we were to have used color imaging, it would
have required four neurons for each pixel in order to
handle the different color weights. The images we used
for testing are all 100x100 pixels, which means that they
must be compressed down to the appropriate size in
order to be analyzed by the network, which Neuroph
does automatically. The neural net in Figure 8 is the net
we constructed and trained to differentiate between the
outlines of basic geometric shapes. we used the images
in Figure 9 as the training images, and the weights
in the network were constructed off of these. One of
the interesting aspects of an image recognition network
as opposed to the other networks discussed so far is
that there are multiple output nodes. In this case, there
is one output node for each training image, and the
value outputted to that neuron represents the level of
similarity between the input image and that training
image. In Figure 8 there is one additional output neuron
that was put in as a control during my experimentation.

Fig. 9. Training Images

10.2 Recognition
Once the structure of the network is in place, train-
ing involves a method similar to backpropogation by
feeding in the values of the pixels of a training image,
along with an input of 1 in the corresponding output
neuron and 0 in the other and then propagating the
errors in the network back towards the inputs, adjusting
the weights accordingly. When this process is complete,
a new image’s pixel data will output the affinity, or
degree of similarity, of the test image for each of the
training images. Figure 10 shows the results of a series of
test images fed through the network. While this network
proved capable of easily recognizing ring shapes, it had
some difficulty distinguishing between triangular and
square outlines. This is likely a result of similarities in
the compressed images.

11 OPEN RESEARCH QUESTIONS

Current research topics in neural networks tend towards
tuning the neural net frameworks already developed
toward new problem types. While much of my report
has glossed over the specifics of the different activa-
tion functions and especially with regard to multi-layer
Perceptrons, these functions play a significant role in
the behavior and learning patterns of the network, and
thus choosing the most optimal function plays a very
important role in solving specialized problems[4], [6],
[10]. Therefore researchers are constantly testing new
activation functions to look for further applications. The
other ongoing field for research is learning rules. In
this report we focused on four different network types
and learning rules, but in reality there are many dozens
of different learning rules, and many networks have
more then one option to chose from. There is constantly
ongoing research into which rules are most efficient and
what new rules might be devised.

12 GROWING APPLICATIONS

One of the predominant areas of interest in neural net-
works in the future is the potential for more applications
for the technology.[5], [12], [4] There are also many
possible areas of expansion in existing uses for neural
network technology.

12.1 Banking and Financial Modeling
One such example is a study conducted in the Egyptian
financial sector in 2008[4]. The experiment compared
neural networks with conventional algorithmic methods
for predicting the probability on loans given out by
banks. In this case, neural networks proved superior
in both accuracy and in processing speed. This due
to two reasons. The first is that financial transactions
are extremely well documented, and there is an almost
excessively large data pool from which to choose the
training data. The second factor is that neural processing
is very front heavy, meaning that while training the
neural network can take a great deal of time depending

7

Fig. 8. Image Recognition Neural Network

on the training set used, the actual processing under-
taken by a trained network is fast. These two factors
make neural networks particularly suited to financial
modeling problems which often include difficult to
model principles and require taking account of complex
factors such as herd mentalities which can be difficult
to calculate explicitly[4]. The recent political upheaval
in Egypt has prevented the implementation of any of
the systems suggested by this experiment, however as
the region hopefully stabilizes over the next few years,
many of these advances may see public use and, if they
prove successful, could be adopted by other countries.

12.2 Facial Recognition
Another area that has seen substantial and promising
experimentation with neural networks, facial recognition
and image recognition are areas that have proven diffi-
cult to overcome for traditional algorithmic processes,
but neural networks are adept at solving[15]. There are
many practical applications for accurate facial recogni-
tion software such as biometric security and identifica-
tion. Security is the most driven field of research in this
area due to the number of highly desirable applications.
Facial recognition technology is already used in many
security camera systems in banks, airports, retail outlets,
and government faculties[15]. However there have been
many circumstances where such systems have failed
to detect targeted individuals due to changes in the
angle of the photograph from those in the database. The
current areas of research are aimed towards producing
a combined system that uses neural networks along
with 3D cameras and modeling software to create a
digital figure that can be recognized from a variety of
angles[15]. Such a system will hopefully be capable of

distinguishing possible individuals regardless of their
clothing by gauging bodily proportions, and will also
foil many of the traditional methods for bypassing facial
recognition software, such as minor adjustments to the
height of the ears or nose which while they seem almost
identical to a human observer, will not register on tra-
ditional algorithmic image searches. The developers of
this software hope to overcome this obstacle by using
neural networks to recognize these images in a way
more similar to the process a human would use, and
thus provide more accurate matches against a database.
This software is already being tested in a handful of
airports, operating alongside current systems and if it
proves successful could become the dominant security
feature in airports in the next five years, providing an
alternative to the current methods which are slower and
more invasive to travelers privacy.

12.3 Biometrics
Similar to facial recognition, biometrics is the process
of verifying an individuals identity through the use
of unique biological features. The main reason neural
networks could prove useful to this industry is one of
the characteristics of neural networks stated previously,
namely that they are very front-heavy in processing. This
means that while it may take some time for the initial
learning process to teach the network software to recog-
nize an individual, once so imprinted, the actual process
for verifying their identity is very quick. Also, once
the network for recognition has been generated, it no
longer requires a powerful processor to run, and could
be easily transfered to much simpler, power-efficient,
and mobile devices. This could provide an alternative for
more cumbersome passkey and code systems, and also

8

reduce or eliminate the need for physical identification
products[15]. This technology is already available but
due to the lack of testing and publicity has yet to enter
into wide scale use however, with advances in mobile
technology and a desire for increased security, it is
very likely that in the next five to ten years biometric
identification will become much more popular.

13 LEARNING ALGORITHMS

The effectiveness of any given neural network is strictly
dependent on the learning rule used to form the con-
nections within it. Considering more effective learning
rules can produce more accurate networks faster, ad-
vancements in these rules are important to the growth of
neural networks. There are too many different learning
rules already devised to list here, and there are just as
many more in development. Many of these rules are at-
tempting to apply probabilistic prediction rules to learn
not only from the test data, but also from extrapolations
of that test data[10]. This research began three years
ago and should be nearing completion within a year or
two however as of the last report the results are still
inconclusive. It proves to be an effective tool at more
accurately tuning networks that already had a great deal
of consistency in the data. To that end, it makes networks
that are already highly accurate even more accurate,
but has little effect on networks that are initially more
inconsistent due to limited sample size.

14 BIOLOGICAL POSSIBILITIES

One of the most interesting possibilities for artificial
neural networks is the possibility for a change in the
structure medium. There are a handful of neurobiolo-
gists working together with computer scientists towards
creating an artificial neural network made from cloned
neuron cells. So far such networks are limited to no more
then 30 neurons, and there is also nearly no control over
the firing rules of the neurons. This research is still in
its earliest stages, however scientists hope that in the
next year or two, they will be able to more successfully
control the firing behavior of the neurons and in the
process make structuring and training these artificial
biological neural networks possible [13]. Such networks
are unlikely to prove useful however as they difficult to
create and control, and thus not cost effective.

15 CONCLUSIONS

Neural networks provide a method of computation that
is distinctly different from traditional algorithmic pro-
gramming, and allow a machine to do the difficult work
of hashing out the details of algorithms itself by learn-
ing through example. This idea draws on inspiration
from biological sources which have proven to be highly
adaptable, animal brains. There are many different types
of neural neural networks such as perceptrons and
adaline networks which have clear limits on their data
processing capabilities and yet still possess the ability

to be adaptively developed by through learning rules.
There are also more powerful networks like the backpro-
pogating multi-layer perceptrons that have fewer limits
on data processing, but no matter the type of neural
network it will always be defined by the distinctive
method of development through learning rules and
training data, and this trait is what makes artificial
neural networks a useful tool for solving problems that
cannot be addressed by other programming methods.

REFERENCES

[1] Image from http://intmstat.com/laplace-
transformation/1lapunitstepfns18pt10.png.

[2] Image from http://www.biomedcentral.com/content/figures/1472-
6750-7-53-2-l.jpg.

[3] Image from http://www.doc.ic.ac.uk/ nd/surprise96/journal/vol4/cs11/report.neural2.jpg.
[4] Hussein Abdou, John Pointon, and Ahmed El-Masry. Neural

nets versus conventional techniques in credit scoring in egyp-
tian banking. Expert Systems with Applications, 35(3):1275 – 1292,
2008.

[5] Gail A. Carpenter and Stephen Grossberg. The art of adaptive
pattern recognition by a self-organizing neural network. Com-
puter, 21(3):77–88, 1988.

[6] Patrick Connally, Kang Li, and George W. Irwin. Prediction-
and simulation-error based perceptron training: Solution space
analysis and a novel combined training scheme. Neurocomput-
ing, 70(46):819 – 827, 2007. Advanced Neurocomputing Theory
and Methodology Selected papers from the International Con-
ference on Intelligent Computing 2005 (ICIC 2005) International
Conference on Intelligent Computing 2005.

[7] Ellen Dr. Covey. Structure and cell biology of the neuron.
[8] S.I. Gallant. Neural Network Learning and Expert Systems. A

Bradford book. MIT Press, 1993.
[9] Stephen Grossberg. Contour enhancement, short-term memory,

and constancies in reverberating neural networks. In Studies in
Applied Math, pages 213–257, 1973.

[10] Milton Roberto Heinen and Paulo Martins Engel. An incre-
mental probabilistic neural network for regression and rein-
forcement learning tasks. In Proceedings of the 20th International
Conference on Artificial Neural Networks: Part II, ICANN’10, pages
170–179, Berlin, Heidelberg, 2010. Springer-Verlag.

[11] Geoffrey E. Hinton. A better way to learn features: Technical
perspective. Commun. ACM, 54(10):94–94, October 2011.

[12] G.W. Irwin, K. Warwick, K.J. Hunt, and Institution of Electri-
cal Engineers. Neural Network Applications in Control. IEE control
engineering series. Institution of Electrical Engineers, 1995.

[13] Gwang S. Jung and Venkat N. Gudivada. Automatic deter-
mination and visualization of relationships among symptoms
for building medical knowledge bases. In Proceedings of the 1995
ACM Symposium on Applied Computing, SAC ’95, pages 101–107,
New York, NY, USA, 1995. ACM.

[14] Nikola K. Kasabov. Foundations of Neural Networks, Fuzzy
Systems, and Knowledge Engineering. MIT Press, Cambridge, MA,
USA, 1st edition, 1996.

[15] S. Lawrence, C.L. Giles, Ah Chung Tsoi, and A.D. Back. Face
recognition: a convolutional neural-network approach. Neural
Networks, IEEE Transactions on, 8(1):98–113, Jan 1997.

[16] C Stergiou and D Siganos. Neural networks.
[17] Bernard Widrow. The lms algorithm and adaline. part i - the

lms algorithm.

APPENDIX

This paper depended considerably on the fundamentals
we learned in CSCI 310 and 317. Algorithms in par-

9

ticular gave us the experience necessary to understand
the traditional methods of computing and computa-
tional methods like finite state automata and Touring
machines. These provided an exceptional contrast to
artificial neural networks when it came time to discuss
the strengths and advantages as well as the possibilities
that neural networks offer. It also was some of what
motivated the choice of topic. In algorithms we studied
genetic algorithms and in doing so briefly touched on
neural networks, but we felt we never covered the topic
and so held onto a lingering curiosity. Studying bioin-
formatics was also a necessity for this project. That class
provided the actual fundamentals on neural networks
themselves, as well as the insight into the develop-
ment process for technologies inspired by nature. Bioin-
formatics also provided some background on possible
applications for neural networks given that we stud-
ied problems that traditional computational methods
proved highly inefficient at addressing. This is another
area where Algorithms proved useful, in analyzing and
understanding the difficulty of solving given problem
types. Furthermore, our entire study of computer science
in general, considering the labs and projects, that pro-
vided the fundamental understanding of the structure
and functioning of computer code. Without this at a min-
imum it would not have been possible to synthesize any
of the comparisons. Finally, this experience also proved
necessary in conducting the experiments with image
recognition neural networks. The software, Neuroph
Studio, used to construct the network is based in the
Netbeans IDE, which we used in software development
to generate the CMC (chose my college) website project.
Without this experience, it would not have been possible
to accomplish any of the research due to how difficult
to operate and unreliable Neuroph studio proved to be.
This project has proven enlightening in several areas.
First It has offered the opportunity to explore a new pro-
gramming method that none of the classes ever provided
the opportunity to use. This proved helpful in grasping
the distinct limitations of traditional methods. Second
off, it provided an opportunity to actually program in a
completely new type of language. Thus far courses had
only addressed functional and object oriented languages,
apart from brief forays into Touring machines and finite
state automata on tests questions, but never actually to
the level of a usable program. Hopefully this experience
will lead to a better understanding of the potential of
other computing methods, and an increased level of
adaptability when coding.

Fig. 10. Image Tests

10

