
Behavior-Based Spyware Detection
State of the Field

Ryan Mord

Saint John’s University

Student
Ryan Mord

Advisor
Dr. Michael Heroux

Year 2014

CONTENTS

I Abstract 2

II Introduction 3

III Spyware 3

IV Signature vs. Behavior-Based Detection 3

V Infection 4

VI Detection Methods 4
VI-A Signature-Based Detection . 4
VI-B Specification-Based Detection . 4
VI-C Behavior-Based Detection . 5

VII The Component Object Model 5

VIII Spyware & Browser Helper Objects 6

IX Putting it all Together 7

X Prototype 8

XI Future Trends 9
XI-A 0 – 3 Years . 9
XI-B 3 – 5 Years . 10

XII Coursework 10
XII-A Software Development . 10
XII-B Computer Organization . 11
XII-C Ethical Issues in Computing . 11

XIII Conclusion 11

References 12

I. ABSTRACT

Spyware is quickly becoming a major security issue. Spyware programs are
installed on a user’s workstation to monitor actions and gather private information
about a user’s behavior. Current antispyware tools work in a way similar to
antivirus tools where code signatures associated with known spyware programs
are cross-referenced against newly-installed applications. Unfortunately, these
techniques are very easy to evade. Behavior-based detection aims to address
the holes left behind by other techniques. This paper examines current spyware
detection techniques and outlines test results from detection method comparison.

2

II. INTRODUCTION

While surfing the web a person is ex-
posed to many threats. These threats commonly
take the form of worms, trojans, viruses, and
the topic of this paper: spyware. Studies done
by the Associated Press and ABC News stated
that 77% of survey respondents said that their
home computers were safe from these threats.
However, when these machines were examined,
it was found that 80% had forms of spyware
installed on them. Malware is one of the fastest
growing computer security threats. Kapersky
Labs, a computer and Internet security software
company reported an estimated 1.5 billion at-
tacks worldwide in 2012. Spyware, a form of
malware that aims at stealing personal infor-
mation, makes up a portion of those 1.5 billion
attacks. An estimated 90% of home computers
in the United States are infected with spyware,
and 40% of security downtime costs in small
and medium-sized companies are attributed to
this harmful form of computer software. The
most prevalent detection methods have their
flaws and although these methods are effective,
the growing volume of malware instances poses
a serious threat to their effectiveness. An alter-
native is behavior-based detection. This method
fills in the cracks left behind by other popular
methods. By monitoring computer system ac-
tivity it has the ability to detect entire classes
of malware without the need to tailor an ap-
plication and its algorithms to specific spyware
instances. To better understand these methods,
spyware, as a whole must be explained.

III. SPYWARE

Spyware is computer software that helps
in the collection of information about an or-
ganization or person without their knowledge.
It also has the ability to take control over a
computer system without the users knowledge
or consent. Some common types of spyware
include system monitors, trojans, adware, key-
loggers, and tracking cookies. Although the
term spyware suggests activity monitoring, the
functions of most spyware programs reach far

beyond that. Data collection – including per-
sonal surfinghabits, user logins, and bank or
credit card information – browser hijacking,
and pop-up generating are common activities
for spyware programs. Programs can also in-
terfere with user control of a computer by
installing additional software. Some spyware
can change computer settings. This can result
in slow Internet connection speeds, unautho-
rized changes in browser settings, or changes
to software settings. Unlike common computer
viruses which are intended to multiply and
spread to many systems, spyware generally
does not attempt to transmit or copy itself to
other computers. The goal of spyware is not to
cause damage; the goal is to gather informa-
tion about the user and, at times, control web
browsing. However, spyware can lead to poor
system performance due to poorly written code
and resource consumption.

IV. SIGNATURE VS. BEHAVIOR-BASED DETECTION

Signature-based detection is the most
popular form of malware detection. The
most well known anti-malware programs –
i.e. Kapersky, AVG, Norton – all use these
methods. The weaknesses left behind by
signature-based detection are addressed by
behavior-based detection. Signature-based de-
tection works by searching for known pat-
terns of malicious data within executable code
documents. The program running the search
relies upon a dictionary of known malicious
data patterns, and compares code contained
in the users file system to the dictionary for
detection. Spyware programmers try to stay one
step ahead off detection software by writing
polymorphic code - code that uses an engine to
mutate the software while keeping algorithms
in tact - and simple obfuscation techniques to
hide its true signature. The biggest downfall
in signature-based detection is the reliance the
detection program has on its reference dic-
tionary. These dictionaries hold signatures of
known spyware instances and are used during
the scanning phase of detection. These dic-

3

tionaries are used by detection programs and
require frequent updates when new malicious
code signatures become available. However, it
is possible for a computer to be infected with
a form of malware for which no signature is
yet known. The possibility of unknown forms
of malware lead to the pressing need for better
detection methods. This led to the inception of
behavior-based detection. Year after year the
goal for antivirus companies has been to collect
the most signatures. These collections not only
slow down the computer they are installed on,
but they require a large amount of space on the
systems hard drive. They also rely heavily on
the user to update their antivirus program. This
means that even on the day of purchase, most
security suites are outdated and ill equipped to
protect the user against the newest malware.

V. INFECTION

In order for a spyware program to infect
a computer system it must first gain access
to the system. Spyware programs typically
infect computer systems through installation.
Downloading media from unofficial sources
and browsing without discretion are often to
blame. It is common for spyware programs to
be deceptively piggybacked along side popular
software and downloaded to the users machine.
Spyware is frequently disguised as browser
toolbars or plugins. These objects fall under
the category of Browser Helper Objects (BHO).
BHOs sit along side the web browser for
easy access to browsing information and traffic.
From this position they can interact with the
operating system (OS) by easily implementing
various interfaces offered by the OS and the
browser to execute whatever tasks the spyware
is intended to perform.

VI. DETECTION METHODS

A. Signature-Based Detection

Signature-Based Detection is perhaps the
most popular detection method. The most well
known anti-malware companies i.e. Kapersky,

AVG, Norton – all use these methods. Devel-
oped in the 1990s, signature-based detection
relies on a database of code signatures for
known spyware instances. A code signature can
be anything from a known malicious function
to a specific file property. Files on the machine
are then cross–referenced against the database
of code signatures to check for matches.The
popularity of this method is due to the success
that comes along with a strong and reliable
signature database. One issue with this method
is the inconvenience that comes from continu-
ously having to update the signature database.
If a user neglects to update the database that
complements their software, they are put at a
greater risk of malicious consequences as time
goes on. Another issue is that of self-modifying
code. Code that uses polymorphic and meta-
morphic algorithms – methods that use an
engine to mutate the software while keeping
algorithms in tact – to alter its code signature
to avoid detection falls under this category.
Spyware authors typically use this as a type
of encryption, disguising the true meaning and
functionality of the source code so that the code
signature appears non-malicious. The last issue,
and perhaps the greatest issue associated with
this method, is the insurmountable threat of
unseen spyware instances; instances for which
no signature exists.

McAfee, one of the most popular anti-
virus and anti-spyware software vendors in
the world, reported nearly one hundred thou-
sand new malware samples every day in 2013;
roughly 69 new samples every minute – as seen
in Figure 1.

This issue played less of a part in the
early years of signature-based detection, but
now it is one of the biggest threats with the
rapid increase of new malware instances.

B. Specification-Based Detection

Specification-based Detection uses a list
of action specifications to determine actions
that are allowed and those that are not allowed.
By checking a program against this list, one is

4

Fig. 1. General COM framework. COM objects are linked together to
form an application.

able to label a specific application as malicious
or not based on how it is supposed to behave.
This detection method has two possibilities
to perform this check. The first is a static
analysis of the program in question. Here, the
analysis gathers information about the program
and investigates the source code or its binary
representation for code sequences that could
potentially be malicious. This information is
then tested against the action specification list
provided by the detection application to decide
whether it is malicious or not. This method
also suffers from the threat of encountering
self-modifying code, similar to signature-based
techniques. The second option is dynamic anal-
ysis. Here the detection application runs the
questionable application in a controlled envi-
ronment. This measure it taken to prevent any
potential damage in the event that the pro-
gram in question is indeed malicious. During
this process the actions of the application are
compared to the policy set by the detection
application. If the actions performed are in vio-
lation of this policy, the application is marked
as malicious. Since it bases detection on the
actions of the application, this method tends to
be more appealing than static analysis since it
is not susceptible to self-modifying code.

C. Behavior-Based Detection

Recently, research has been conducted
on the topic of behavior-based spyware de-
tection which overcomes the shortcomings of

other technologies that use signature-based
techniques. This technique enables the detec-
tion of spyware based on its behavior. The
benefit that this method provides is the ability
to detect entire classes of malware without the
need of specifically tailoring an application and
its algorithms to specific spyware instances.
This is the difference between specification-
based detection and behavior-based detection.
Specification-based systems and their algo-
rithms must be focused and calibrated to spe-
cific forms of spyware AND activities, while
behavior-based detection is more general and
does not focus on an specific application. The
advantage of behavior-based systems is that
they monitor operating system interactions and
function calls and link any suspicious activity
the application calling it. This is made possible
by the tightly knit integration between web
browser plugins which will be detailed later in
this paper and the operating system. Behavior-
based detection is appealing because it elim-
inates the need for large signature databases.
It is also resilient to polymorphic and meta-
morphic code because it judges maliciousness
on the actions of an application. The benefits
and possibilities of this detection method have
inspired this paper, thus the technical aspects
of behavior-based detection will be examined
and explained. The Windows Operating System
and Internet Explorer will be used as examples
throughout this paper. This is due to their
common association with spyware and their
attractiveness to spyware authors.

VII. THE COMPONENT OBJECT MODEL

To fully understand the actions taken by
spyware programs it is important to have a
basic understanding of Microsofts Component
Object Model, or COM. An application is typ-
ically a monolithic block of code that almost
never changes throughout its lifetime from
compilation to replacement. This tends to be
less than ideal when maintaining an application
after it has been put into production. Small ad-
justments that are made to specific parts of the

5

Fig. 2. General COM framework. COM objects are linked together to
form an application.

application require the entire application to be
updated and relaunched. Attempts to overcome
this shortcoming have led to component based
solutions that intended to break the large blocks
of code into smaller components. This is what
Microsoft had in mind when they developed the
Component Object Model. These COM objects
are essentially the building blocks for many
Microsoft applications. A single component
can be seen as a miniature application that
has the ability to interact with the other COM
objects. Multiple COM object interfaces are
linked together to form a larger, more complex
application.

The core benefit of this technology is that
objects can be linked dynamically. Dynamic
linking allows the app to evolve sensibly with-
out having to redistribute the entire application
if only some of the components change. With-
out the ability of dynamic linking there is virtu-
ally no benefit over standard monolithicblocks
of code. Since the idea behind the component
model is to have components interact with each
other, there must be a standard to do so. This
accomplished by having the components imple-
ment stable interfaces provided by Microsofts
core libraries, or interfaces that are created by
the user. It is important to note that a compo-
nent providing the functionality to an interface
is called a server, whereas a component using
an interface is called a client (BHO). While
an interface comprises a set of functions, a
component is made up of a set of interfaces,
leaving a system to be a set of components.

Fig. 3. Components are made up of multiple interfaces, and are linked
together to form a larger application

Through multiple inheritance, a component is
allowed to implement any number of interfaces.

Every COM object must inherit from the
IUnknown interface. This interface provides a
function that allows the COM object to query
to any interface or set of functionalities that
the author needs. These features contribute to
the attractiveness of the Windows operating
system for spyware authors. Microsofts COM
framework provides spyware authors the tools
that they need to access browser activity and
user information. COM is used by many other
important Microsoft technologies like ActiveX
and Windows Runtime, and because COM is so
fundamental to the Windows operating system,
alteration to the COM framework to make it
less susceptible to spyware is unrealistic. It
is a common exploitation method for spyware
authors and the open backdoor it provides
makes a strong case for behavior-based detec-
tion methods.

VIII. SPYWARE & BROWSER HELPER OBJECTS

To further understand spyware it is neces-
sary to know where it is typically installed how
it interacts with the operating system to exploit
user information. Sensitive user information
is often accessed through web-interfaces and
browser plugins. Browser plugins and graphical
plugins in the form of toolbars fall under the
category of Browser Helper Objects (BHOs).
These objects are commonly linked to a web
browser – in our example Internet Explorer –
and are often used to gather user data. The

6

reason internet Explorer is so attractive for spy-
ware authors is its tightly knit integration with
the Windows operating system. This makes it
easier for spyware to use system resources and
gather and send information more easily. It is
also attractive for its wide use among busi-
nesses. As of March 2014, Internet Explorer
held a 48% marketshare among businesses and
corporate america. Browser helper objects in
Internet Explorer fall under the category of
COM objects as mentioned above. The benefit
that BHOs gain from following this framework
is the ability to access any other COM interface
that is implemented by the browser. The list of
possible COM objects is far too vast for the
scope of this paper, but the basic functionalities
needed to gather and send user data are all
available with a simple interface implementa-
tion.

To register a BHO as a COM object,
the BHO must simply implement the
IObjectWithSite interface. It is the functionality
provided by this interface that gives any object
that implements it the label of Browser
Helper Object. With this implementation,
a spyware instance will be recognized as
a BHO by the browser and will be loaded
at browser launch. In Internet Explorer and
the Windows operating system, all browser
helper objects that are registered as COM
objects are accessed in the registry – a
hierarchical database that stores information
about the user and the system – via the key
\HKLM\SOFTWARE\Windows\CurrentVersion
\Explorer\Browser Helper Objects. For every
BHO that gets loaded the browser passes
a pointer to one of its own IUnknown
interface that provides access to all other
interfaces the browser implements. This is
another exploitation available to spyware
authors. There are a few interfaces that
are commonly accessed by malicious browser
helper objects. The main interface of interest to
spyware objects as BHOs is the IWebBrowser2
interface. This interface provides a great deal
of functionality to any BHO that implements

it. IWebBrowser2 gives the ability to browse
to a certain webpage, access the current URL,
navigate backwards and forwards, as well as
close the browser all together. BHO objects
can be seen as plugins to Internet Explorer
with the additional ability to do things like
automatically displaying a certain webpages
HTML code, viewing Portable Document
Format (PDF) files embedded in the browser,
or configuring a toolbar for a preferred web
search engine. Since BHOs and Toolbars have
complete access to the browsers interfaces
and the applications memory space they can
completely control the browsers behavior and
be notified of user events. Because of this
and the powerful possibilities it offers, BHOs
and toolbars are frequently used as main
components for spyware. However, the threat
posed by browser helper objects that utilize
the COM framework also brings about the
possibility for behavior-based techniques.

IX. PUTTING IT ALL TOGETHER

Spyware often takes the form of web
browser plugins known as Browser Helper Ob-
jects. These objects have the ability to imple-
ment a wide array of interfaces made available
by the browser itself through Microsofts Com-
ponent Object Model. These interfaces provide
the functionalities needed to gather user in-
formation, log keystrokes and search histories,
and even control browser completely. While
signature-based detection would examine these
BHOs directly by looking for malicious code
signatures, behavior-based techniques skip this
process and focus on the actions taken by
the BHOs upon execution. By listening very
generally to the system, behavior-based detec-
tion applications fill in the holes left behind
by signature-based detection. The BHOs are
allowed to implement whatever interfaces they
would like as COM objects, but as soon as they
execute a malicious action they are flagged and
caught by the detection application. It is for
these reasons why behavior-based detection is
so appealing as a new technology.

7

Spyware is becoming a substantial threat
to modern computer usage both in terms of
resource consumption and user privacy viola-
tions. As of 2013 an estimated 80% of com-
puters were protected from viruses and mal-
ware with some sort of antivirus software. This
number is up from 60% in 2003. This increase
in awareness among computer users combined
with the need for more comprehensive spy-
ware prevention will lead to substantial growth
in both behavior-based detection, as well as
legislation prohibiting spyware. These are the
two areas in which we expect to see the most
change over the next 5 years.

X. PROTOTYPE

Further research comparing signature-
based techniques and behavior-based tech-
niques has led to a comparison of both detec-
tion methods to determine and compare success
rates. Testing consisted of installing and run-
ning 20 known malicious spyware instances in
the same environment as two spyware detection
applications. The 20 samples consisted of 10
malicious toolbar instances, and 10 malicious
application instances. The names of the in-
stances can be seen below:

1) 4loot Toolbar
2) Allin1Convert Toolbar
3) ConnectSo Toolbar
4) Freshy Toolbar
5) Motitags Toolbar
6) SearchFlybar2 Toolbar
7) Swagbucks Toolbar
8) Trojan.ISTbar Toolbar
9) Zwinky Toolbar

10) Winload Toolbar

11) WebfettiInitialSetup1.0.1.1
12) BrowserUpDateForFree
13) Crypt2
14) softlicious.infoDLNEI1.7.2
15) Adware.SpyClean.N
16) Spyware.1893
17) Spyware.2535
18) Adware.Spywarestop.B
19) Adware.SpyClean.K
20) Trojan.316DAA73

The applications used were Threatfire
Zero-Day Malware Protection to represent
behavior-based techniques, and Spybot Search
& Destroy to represent signature-based detec-
tion.

The testing environment was a Toshiba
Satellite laptop running Windows XP and In-
ternet Explorer was used as the web browser.
Before any testing was done, the machine was
formatted and a fresh copy of Windows XP to
eliminate the possibility of interference from

Fig. 4. Table showing malicious activity for each toolbar spyware
instance. Detection by both programs is also noted

Fig. 5. Table showing malicious activity for each application spyware
instance. Detection by both programs is also noted

previously installed programs or malware. All
spyware instances were downloaded to a USB
flash drive on a separate machine and installed
in the testing environment directly from the
USB drive. This step was taken to ensure
that only the desired spyware instance was
installed, eliminating the possibility of piggy-
backed software.

First, each spyware instance was installed
and run while Threatfire was running and mon-
itoring the system. After installation, normal
browsing patterns were conducted for five min-
utes to try and provoke the instance to perform
malicious activities. Our normal browsing pat-
terns consisted of static Google searches and
video streaming. Any detections made by the
Threatfire application were noted and recorded.

Browsing activity was the halted and
Threatfire monitoring was then stopped. The
Spybot application was then run to try and de-
tect the spyware instance that was just installed.
After the scan was complete, malicious prop-
erties were noted and recorded for comparison.
The next spyware instance was then loaded and
installed onto the machine, and the process was
started from the beginning. This was done until
all 20 instances had been tested.

The results returned from the test were
as follows:

8

Detections were generally triggered for
a few issues like homepage alteration and ad-
ware, and occasional registry changes. Unfor-
tunately, none of the instances showed behavior
that was extremely malicious, such as browser
hijacking. This is not surprising since these
activities are less common and we had a sample
size of only 20. We would hope that as the
sample size grows, we would come across
a few instances of this nature. You can see
that Threatfire never caught programs as they
were being installed, but only upon interaction.
This was expected since the spyware instance
does not run its code upon installation. Since
Threatfire only monitors actions, it would not
be able to detect an instance on installation.

That being said, Spybot did not detect
anything upon installation either. This outcome
is also expected for a couple of reasons. First,
the signature-based detection application re-
quires a scan to be initiated by the user. With
this not being the case during installation, it
would be impossible for the application to de-
tect an instance during this process. Secondly,
similar to the signature-based application, the
code of the spyware instance is not fully on
the system until the installation completes.
That means that until the application is fully
installed, there is no way for the detection
application to discover the threat.

Biggest thing to notice is the success
that the Behavior-based technique experienced.
It only missed one sample, where the other
technique missed two. But both detection rates
are relatively good with Behavior Based having
a slight edge. Overall success rates for both
methods were as follows:

XI. FUTURE TRENDS

A. 0 – 3 Years

Over the next three years we expect to
see behavior-based detection techniques trickle
in to the mass market of antivirus tools.
Some of the big names in antivirus software
have already implemented their own behav-
ior based monitoring. Companies like Avast!,

Fig. 6. The first table shows the overall detecton rate for each
application.

Fig. 7. This table breaks down each detection percentage for each
application showing the percentage for each instance type.

AVG, and Failsafe already offer behavior mon-
itoring right along side their successful and
widely used signature-based tactics. This trend
is likely to continue. Both detection methods
address different aspects of malware detection.
Signature-based detections inability to detect
new forms of malware is specifically addressed
by behavior-based techniques. For this reason,
the thought of combining the two methods into
one package is plausible.

The next three years could also bring
the introduction of new legislation against spy-
ware. Most legal action is taken against spy-
ware distributors by the Federal Trade Com-
mission. The fact that adware and spyware
often cross back and forth between legal and
illegal activities makes this a complex issue.
Several spyware related bills were introduced

9

for debate in the 108th and 109th Congres-
sional sessions from the year 2004 to the year
2006. These bills only made it to to various
House and Senate committees before being de-
feated. One of the most promising anti spyware
bills to make its way through Washington was
the SPYBLOCK (Software Principles Yielding
Better Levels of Consumer Knowledge) bill
which outlawed the most common spyware
and adware practices in detail. Its sections
covered zombies, modem hijacking, denial of
service attacks, endless popup advertisement
loops, stealing personal information, disabling
security, modifying browser settings, deceptive
installation notices, keyloggers, file damage,
and software bundling. Unfortunately this bill
was defeated. A recent trend, however, seems to
be that of state-by-state legislation. Many states
such as California have implemented their own
moderate anti-spyware laws to limit the abuse
that is taking place with user information.

B. 3 – 5 Years

By the end of this five year period we
expect to see full behavior-based integration
with the vast majority of well known anti-
virus and anti-malware applications. With the
advancement of behavior-based technologies
taking hold with some of the major players –
such as AVG and Avast! – it is reasonable to
expect the lesser known software companies to
follow suit. In terms of legislation it can be
expected that most states with have significant
laws prohibiting certain spyware activities. It
is likely that activities like key logging and
browser hijacking will be forbidden and pun-
ishable by fines and other means of punish-
ment.

Current spyware authors are unlikely to
quit the spyware game until the costs and risks
become greater than the potential benefits in-
volved. Enabling effective enforcement at home
and abroad of new and current laws will in-
crease the time, money and manpower needed
to circumvent them for a successful spyware
campaign. The other side of the equation is

reducing the profitability of spyware. User ed-
ucation is a key element, but the more people
are taught to practice safe surfing techniques,
the the less appealing producing spyware be-
comes. However, regardless of the amount of
regulation that is put on spyware and its au-
thors, there will always be a threat. Legislation
cannot defeat spyware all together. Solid anti-
spyware software can address what would be
left behind. Combining signature and behavior-
based techniques is a very viable option for
combatting these threats.

XII. COURSEWORK

The computer science curriculum and the
education provided by Saint Johns was of great
help when writing this paper. There were many
courses that helped the ease of understanding
of various topic areas. Some knowledge was
hands-on and technical, but the vast majority
was referencing what was learned in the class-
room to better understand how things work
conceptually. The three courses that were of
the most help were Software Development,
Computer Organization, and Ethical Issues in
Computing.

A. Software Development

The fact that this class offered insight into
the topic should not be a very big surprise.
The research conducted was centered around
malicious software, so having the knowledge of
software development and the process involved
was of great benefit. There were some instances
where I was able to see the source files for
some malware samples. This was extremely
satisfying because of the thorough understand-
ing of the Java programming language pro-
vided by the Software Development course.
This made it possible to walk through the
given malware sample step-by-step to see how
it conducted itself, and fully understand what
was taking place at any given line of code.

The theoretical implications were also
strong. Reading about many malware and spy-
ware instances and their actions always pro-

10

voked the question of how the actions in ques-
tion might be carried out. Referencing software
core libraries and the system integration offered
by them improved understanding greatly.

B. Computer Organization

There was one specific research area
where the coursework offered by the Computer
Organization class was useful, and this area
was stack traces. Referring to behavior-based
detection techniques, a question that arose was
how a behavior-based application links a be-
havior to the application calling it. This ques-
tion stood for a long time until the term stack
traces was mentioned. This reference brought
the topics of this course into question and led
to a better understanding of how an application
could trace an action to its executer.

C. Ethical Issues in Computing

This course was referenced the most
throughout the research process. The main
issue addressed by this course was whether
or not various topics in computer science are
ethical. Spyware is software that intentionally
takes information from the user, most often
without their knowledge or consent. Because
of this understanding, there were two primary
sides to the ethics of spyware: installation and
execution.

Installation was found to be a gray area
of sorts. Since spyware can be directly down-
loaded, piggybacked with other software, and
forcefully installed, there were many factors to
consider. We figured that in the case of direct
download when the user downloads a spyware
instance alone without being deceived it was
ethical since nothing was being forced upon the
user and the infection was due to user negli-
gence. Piggybacking was found to be unethical
on all accounts since it is deceptively hidden
along with the software that was intended to be
downloaded. Here, however, the blame can be
put on the software distributor that has chosen
to carryout the piggybacking. This distributor
could be the malware developer themselves,

or some third-party. Lastly, forceful or drive-
by installation installation that is carried out
unwillfully upon visiting a malicious URL is
unethical on all accounts.

Execution is rather black and white. We
found that execution carried out without the
users consent, that performs actions that are
unknown to the user, is unethical. Alternatively,
actions that the user is made aware of are
ethical.

These guidelines bring software like
Google Toolbar into question. This piece of
software is offered by a very reputable com-
pany, and provides many great features to
the users like bookmarking, sharing, and cus-
tomization. However, the toolbar logs the
browsing history made through the toolbar to
help Google with directed advertisements. It is
activities like these in which the ethicality is
up to the individual since information is being
taken, but it is to being used in a malicious
manner.

XIII. CONCLUSION

Spyware is becoming a substantial threat
to computer system resource consumption
and user privacy. Modern prevention software
predominantly uses signature-based detection
methods that can be evaded by code encryp-
tion and are unable to detect previously un-
seen instances. Behavior-based detection works
around this issue by listening for specific ac-
tions carried out by the spyware instance. A
tightly knit integration with the Windows op-
erating system makes internet explorer very
susceptible to spyware. Utilizing COM objects
and interfaces to gain access to the browser
makes gathering information fairly simple for
any spyware instance that marks itself as a
browser helper object. Application camparisons
were conducted in which 20 malicious spy-
ware instances were installed an executed on a
machine running both a signature-based detec-
tion application and a behavior-based detection
application. Results showed that the behavior-
based application was able to accurately detect

11

a greater percentage of the spyware instances
than the signature-based detection. Moving for-
ward we hope to see method integration among
major players in the antivirus software indus-
try. Combining signature-based detection with
behavior-based detection offers promise in the
ongoing fight against malicious software.

REFERENCES

[1] Dr. B. B. Meshram Ashwini Mujumdar, Gayatri Masiwal. Anal-
ysis of signature-based and behavior-based anti-malware ap-
proaches. International Journal of Advanced Research in Com-
puter Engineering and Technology, 2(6):2037–2039, June 2013.

[2] Rossie Cortes. Yahoo introduces new spyware-detection feature.
Caribbean Business, 32(25):42, 2004.

[3] Manuel Egele. Behavior-based Spyware Detection Using Dy-
namic Taint Analysis. VDM Verlag Dr. Mller Aktiengesellschaft
& Co. KG, 2008.

[4] Andrew Garcia. Join the spyware fight. eWeek, 23(6):37 – 42,
2006.

[5] Steve Gibson. Spyware was inevitable. Communications of the
ACM, 48(8):37 – 39, 2005.

[6] Engin Kirda Manuel Egele, Christopher Kruegel. Dynamic
spyware analysis. 2006.

[7] Kirk P. Arnett Mark B. Schmidt. Spyware: A little knowledge
is a wonderful thing. Communications of the ACM, 48(8):67–70,
August 2005.

[8] Philip Okane, Sakir Sezer, Kieran McLaughlin, and Eul Gyu Im.
Malware detection: program run length against detection rate.
IET Software, 8(1):42 – 51, 2014.

[9] Anne M. Payton. A review of spyware campaigns and strategies
to combat them. In Proceedings of the 3rd Annual Conference on
Information Security Curriculum Development, InfoSecCD ’06,
pages 136–141, New York, NY, USA, 2006. ACM.

[10] Anne M Payton. A review of spyware campaigns and strategies to
combat them. InfoSecCD Conference, pages 136–41, September
2006.

[11] Ashkan Sami, Babak Yadegari, Hossein Rahimi, Naser Peiravian,
Sattar Hashemi, and Ali Hamze. Malware detection based on
mining api calls. In Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC ’10, pages 1020–1025, New York,
NY, USA, 2010. ACM.

[12] Mark B. Schmidt and Kirk P. Arnett. Spyware: A little knowledge
is a wonderful thing. Communications of the ACM, 48(8):67 –
70, 2005.

[13] Douglas Schweitzer. Detecting and removing spyware. Certifi-
cation Magazine, 6(9):40, 2004.

[14] Sudhindra Shukla and Fiona Fui-Hoon Nah. Web browsing and
spyware intrusion. Communications of the ACM, 48(8):85 – 90,
2005.

[15] Peter Szor. The Art of Computer Virus Research and Defense.
Addison-Wesley, 1 edition, 2005.

[16] Zhang Xiaoni. What do consumers really know about spyware?.
Communications of the ACM, 48(8):44 – 48, 2005.

12

