
Mobile Applications in Android

Nick Honetschlager
Computer Science Department

Saint John's University
Collegeville, MN

nhonetschlager@gmail.com

Abstract - In today’s world, mobile applications
are becoming increasingly important in all aspects
of our lives. No longer are phones reserved just
for making calls, they now do more than the PC’s
of a few years ago. The open source Android
operating system is a great example of the future
of mobile applications. Utilizing existing tools such
as Eclipse and free plugins, the barrier to entry is
low enough for almost any programmer familiar
with Java to begin developing. For my
demonstration, I utilized the Android platform
with the Java programming language to
demonstrate the power and ease of use of these
tools when used to create a smart phone
application.

I. INTRODUCTION

Not even a decade ago, mobile phones were

used almost exclusively for phone calls and the
occasional text message. This did not change much
until somewhat recently. The number of mobile
applications has multiplied with the proliferation of
smart phones, and other portable smart devices [10].
The number of common mobile devices has increased
also, and this growth has been accelerated even
further with better hardware and software.
Improvements such as touch screens have also
changed development, allowing developers to create
more user friendly applications and more interactive
games. Android in particular is an excellent platform
for those starting out in mobile phone application
(app) development. It offers several built in resources
such as existing libraries and useful API’s. Apps are
coded and tested in the familiar Java programming
language using the integrated development
environment (IDE) Eclipse, and can be debugged on
an actual Android device.

II. BACKGROUND

A. Early Beginnings – MTS & Cellular
 Mobile telephony had early beginnings in
the 1940’s, but the era of cellular telephony that we
are familiar with did not begin to grow until the
1980’s. The first pre-cellular system was known as
the Mobile Telephone Service (MTS). It was
developed by AT&T, and the hardware was built by
Motorola [12]. It had many limitations compared to
today’s technology. First, the equipment was bulky.
It was often paired with vehicles since trunk space
could be used for its housing. Second, it drew a lot of
power, so batteries had to be very large. This also
made it suitable for pairing with a vehicle since it
provided a stable mobile energy source. Third, it was
difficult to use. The MTS hardware did not operate
like a regular telephone. The unit had to be warmed
up (prior to transistors), and then the user had to
search for a clear channel. This was often difficult
due to users competing for few channels on the small
piece of bandwidth allocated to the service. Once on
a clear channel, users had to contact an operator to be
connected to their party. It also had several other
disadvantages. Communication was not full duplex
so you could not talk and listen simultaneously, other
MTS users could listen in on each other’s calls, and
the service was extremely expensive for its time.

The idea for today’s cellular telephony was
actually drawn up in the 1940’s by Donald H. Ring, a
member of AT&T’s Bell Laboratories. His idea
divided cities into neighborhood-sized coverage areas
called cells, and each had its own antenna. To avoid
interference, each cellular site used its own set of
frequencies. Unfortunately, bandwidth was very
limited. However, since there were to be numerous
cellular sites, frequencies could be used over again as
long as they did border each other [12]. As a user
would move across cellular areas, the system would
pass the connection from one antenna to the next.
This would theoretically reduce power consumption,
reduce weak signals, and ease future expansion of
cellular coverage [12]. Deployment was held back for
several reasons including insufficient computing

power for switching, a lack of frequencies, and bulky
hardware. Computing power was minimal in the
1940’s, and switching cellular sites takes a lot of
computations when many users and cellular sites are
involved. When a user switches to another cellular
site, the call has to move to another transceiver, and
also has to change frequencies. A new channel has to
be selected within those frequencies since there are
potentially thousands of users accessing a sliver of
bandwidth at once. This all has to be done very
quickly to maintain the call, and therefore is very
difficult to do. That is one of the largest reasons why
the concept of cellular phones was shelved for so
long. Bandwidth was also very limited for this
service. It took AT&T and Motorola decades to lobby
for just a few MHz. It took them time to prove to the
Federal Communications Commission (FCC) that
this concept was worth the space on the spectrum.
Hardware also did not shrink enough until the 1970’s
to produce a prototype. Radios prior to the transistor
in the 1940’s still used large tubes and were
impractical for anything besides a car mounted unit.

B. Cellular Phone Era

Mobile cellular handsets date to the 1970’s
when they were just a prototype by Motorola.
Cellular phone evolution can be broken down into
four distinct phases: brick, candy bar, feature phone,
and smart phone eras. Pressured to design a working
handheld mobile phone before AT&T, Motorola
developed a working prototype in only a few months
[14]. They had most of the miniaturized components
on hand and technology to produce one, but prior to
that everyone had been focusing on car phones where
size was less of a concern. However, these early
models were still bulky and carried large batteries
just to have enough power to reach the few cellular
towers available. Only a few short calls could be
made on one charge, and there were no other features
available. The first model marketed by Motorola was
the Dynatac 8000x [14]. Due to their large size,
weight, and boring design, these early cellular phones
are classified into the “brick” era.

The “candy bar” era introduced the boxy
phones reminiscent of the 1990’s that had a
characteristic rectangle shape that gave them their
name. These phones were much smaller than the
previous generation’s due to the increased number of
cellular towers available (did not need as strong of
transmitters). They had capabilities beyond that of
the previous generation, and included such things as
Short Message Service (SMS or “texting”). These
devices also welcomed in the second generation of
phone network technology, or “2G” [9].

The “feature phone” era incorporated more
functions into mobile phones such as taking pictures,

listening to music, and basic internet access.
Unfortunately, several of these “advanced” features
were unused by a majority of the population.
However, these devices were slimmer and more
attractive to consumers than the previous generation.
They may not have made quite the technological leap
of the previous generation of phones, but they opened
the doors for the application filled ones of the
succeeding generation. A shift in network technology
continued, and this change introduced packet-
switching on cellular networks. Experts consider this
time as being “2.5G” [9]. This leads into the next era
which is the coming together of phone abilities and
Personal Digital Assistant (PDA) type functions.

PDA’s, were the devices that current smart
phones borrow much of their functionality from.
Most people credit Apple with the first PDA, who
actually coined the term. Their device was known as
the “Newton”, and performed tasks such as holding
calendar appointments, address books, personal
notes, etc. Later on in 1996, 3COM came out with the
Palm Pilot, and Microsoft with their Windows CE
devices. Palm currently makes up a majority of the
remaining PDA market with its devices that run Palm
OS, and Microsoft with Pocket PC’s that run versions
of Windows Mobile (currently at version 7). These
devices gained popularity during the late 1990’s and
early 2000’s. They are less used by the general
population, but are still used in several settings,
including the medical field [11].

The “smart phone” era began as far back as
the early 2000's. Smart phones are phones with
advanced features such as those founds on PDAs and
PCs. These early devices were the sometimes poor
combination of cellular phones and PDA functions.
At first, they had trouble gaining a share of the
cellular phone market. Eventually these devices
evolved, and combined the more useful features of a
PDA with the benefits of calling and SMS. Some of
the more prominent manufacturers were Palm, Nokia
and RIM (Blackberry). They had the right
combination of superior features and design [9].
Many contained much faster processors and memory
capabilities beyond those of previous phones. With
this generation of devices came the third generation
of network technology (3G), and faster data transfer
for these internet ready devices. Some consider the
next era to be “touch screen”. I consider this to be
part of the smart phone era because there is so much
overlap, and both are helping to bring in the fourth
generation of networks (4G). Both smart phone and
touch screen devices utilize the diverse number of
operating systems and applications available.

C. Current Smart Phone Platforms
In today’s market, there are several different

operating systems available to the mobile developer:
Android, iPhone OS, Blackberry, Symbian and
Windows Mobile, just to name a few. The iPhone OS
is probably one of the most visible in today’s market.
It supports a variation of Objective-C for its
programming, and Apple supplies a free SDK for its
development. Blackberry has its own proprietary OS
and software that runs efficiently on its devices. It
has a less developed development community than
the other platforms. Symbian is an open source
operating system that was acquired by Nokia in 2008.
Its native language is a variation of C++ that is
surprisingly not compatible with other
implementations of C++. Nokia somewhat recently
created a foundation for it to maintain its open source
status. Windows Mobile is a mobile operating system
developed by Microsoft. It has three versions with
one for smart phones, PDAs with phone functions,
and PDAs without phone functions. It is usually
programmed in C++, or with a compact version of
the .NET framework. Its newest release is version 7
released in 2010 [7].

III. TECHNICAL UNDERPINNINGS

A. Getting Started

To begin programming in Android, several
things are needed. Fortunately, all software is free,
and the only cost is hardware. A modern PC is
mandatory for development, but the requirements are
not too stringent. Any recent multi-core processor
paired with a few gigabytes of RAM will suffice [3].
A high-speed internet connection is also needed,
because setup will require downloading Eclipse, the
Java Development Kit (JDK), Android Software
Development Kit (SDK), and the Android
Development Tools (ADT) [3]. Installing and
configuring these will be most of your setup time.
There will be a few other things to setup such as path
variables, and the app emulator.
 As stated, you will need the JDK, the
Android SDK, and the ADT. They are necessary
because they provide all of the functionality for
development. The Android SDK provides a complete
set of tools for the developer, and brings in
functionality not normally found in Eclipse. This
includes a debugger, Android libraries, a handset
emulator, full documentation, code samples, and
tutorials for learning [1]. The JDK is needed for any
development in Java. It is the basic code and libraries
used for development [3]. The ADT eliminates
tedious tasks that most app developers would rather
not have to worry about. It takes care of such tasks as

building the correct file structure for apps and
creating necessary base files [3].

Eclipse makes Android development much
easier. It brings together all of the benefits of the
JDK, Android SDK, and the ADT [3]. A great feature
is being able to compile your code as it is written,
and see errors as they arise. User interface design is
made easier with several drag and drop tools.
Automatic code is written in the background as you
use Eclipse to design the layout of your app. Also
integrated into Eclipse is the handset emulator for
simulating applications on a mobile device. This is a
good alternative to the usual text output in a console
or a popup user interface window. Instead, this
emulator mimics a phone’s layout and runs your app
within the virtual phone’s “screen”. It also emulates a
Linux kernel on your computer to run your app [3].
This is why the tool can take a long time to initialize,
but it is worth the wait if you do not have an Android
device to test on.

Visual debugging is also a major advantage
of using Eclipse. Similar to the tool integrated into
other products like Visual Studio, you can step
through a running program line by line to see where
an error is occurring or see where particular actions
take place within your code. This is standard for any
version of Eclipse, but the difference here is that you
can debug your program while running it on your
connected Android device. This allows a developer to
see exactly how their software runs on the particular
hardware. Testing on Android is straightforward and
it uses the popular JUnit test framework. It uses a
simplistic managed test environment that
automatically builds and destroys every time it runs,
so there is a reduced chance of testing problems [4].
 Building an Android app may seem
somewhat carefree from what I have described so far,
but you must be careful to avoid simple mistakes that
will waste development time. Developers must be
careful to choose the correct target version. This
refers to the different versions of Android available
on different phones. Currently, the largest market
share is phones with either version 2.1 or 2.2. At the
moment, the newest version is 3.0, but very few
products support it. This is important because if you
target a version higher than what a phone can
support, that app will not be able to run on that phone
even if it only uses older features. It is safer to target
earlier releases because newer versions are backward
compatible with older ones [3].

B. Android – Under the Hood
 Android uses familiar programming
languages like Java, XML, and C/C++ for its
applications. It uses Java for most of the code, but not
the same Java that you are familiar with from

coursework. This version excludes libraries that are
unnecessary for mobile devices [3]. Despite th
difference, programming in Android should be the
same. This different version is called the “Dalvik
Virtual Machine” [3]. XML code is used primarily
for the user interface side of development. This is
aided by the drag and drop interface provided within
Eclipse. To do more complicated things you will
have to be familiar with editing XML. C/C+ are not
used much for creating applications, but are for the
libraries. The average developer will not need to
worry about these, because they are usually accessed
through some type of Java interface [6]

1) Structure

The operating system is based off of a
modified Linux kernel [2]. This is actually part of a
larger architecture that includes several layers of a
software stack. The Linux kernel is on the bottom
followed by libraries, runtimes, and applications
sitting above that. The application layer runs the
standard Java applications that most people will
interact with. The framework layer provides a basic
structure for all applications that run on Android. It
can share functions used by multiple applications that
are already running, and includes managers for the
differing applications. These are all written in Java as
well. Below that are the included libraries, and
Android has several of these available. How
these are not written in Java like the higher level
applications that utilize them. They are written in C
and C++, and require a Java interface to access them
[8]. These are better known as the Android API’s
They include things like graphics, media codecs, and
database storage code. The runtime also sits on this
layer and is comprised of a custom virtual machine
and the core libraries. The core libraries provide most
of the code that Java needs to operate. The Dalvik
Virtual Machine as mentioned above is a custom
version of the usual Java virtual machine. It

Figure 1 – Android Structure.

Figure 2
activity and service
lifecycle.

coursework. This version excludes libraries that are
. Despite this

difference, programming in Android should be the
same. This different version is called the “Dalvik

. XML code is used primarily
for the user interface side of development. This is
aided by the drag and drop interface provided within
Eclipse. To do more complicated things you will
have to be familiar with editing XML. C/C+ are not
used much for creating applications, but are for the
libraries. The average developer will not need to
worry about these, because they are usually accessed

[6].

The operating system is based off of a
. This is actually part of a

larger architecture that includes several layers of a
software stack. The Linux kernel is on the bottom
followed by libraries, runtimes, and applications
sitting above that. The application layer runs the
standard Java applications that most people will
interact with. The framework layer provides a basic
structure for all applications that run on Android. It
can share functions used by multiple applications that
are already running, and includes managers for the
differing applications. These are all written in Java as
well. Below that are the included libraries, and
Android has several of these available. However,
these are not written in Java like the higher level
applications that utilize them. They are written in C
and C++, and require a Java interface to access them

. These are better known as the Android API’s [7].
dia codecs, and

database storage code. The runtime also sits on this
layer and is comprised of a custom virtual machine
and the core libraries. The core libraries provide most
of the code that Java needs to operate. The Dalvik

above is a custom
version of the usual Java virtual machine. It

eliminates the core libraries unnecessary for mobile
devices. The virtual machine’s function is to translate
the Java code to something the operating system can
understand [6]. After the code conversions take place
the software is run on the device. Each running
process has its own virtual machine to avoid bringing
down the entire device during a software crash
The final and lowest layer is the Linux kernel and a
set of drivers for the hardware components. These
include drivers for the display, keypad, and
connectivity for WiFi or cellular signals

2) Activities and Services

Android was
designed to handle the
tasks of managing
mobile devices and to do
it with very limited
resources [5]. Limited
resources in the case of
mobile devices would be
battery power,
processing power,
memory, and storage.
The Dalvik Virtual
Machine was meant to
run on a slow CPU, with
little RAM, and on an
OS with no swap space
[1]. Android’s activity
and service life cycle has
different methods that
make sure that resources
are not being wasted on
unnecessary or dead
activities.

An activity
starts with onCreate().
This is where needed
files are created, and
information from the last
session is opened [5].
OnStart() is called next and checks to see if the new
activity can become the main activity. If it can,
control is given to the onResume() method, oth
control transfers to onStop(). OnResume() retains
control as long as the program is running and is in the
foreground. If an activity is stopped or pushed to the
background, onResume() is called when it is to be
continued. In the situation that your
pushed to the back, onPause() is called right before it
is suspended. This is an important method because it
preserves your activity while freeing up system
resources for the activity in the foreground
important to note that just because your activity is

Figure 2 – Android
activity and service
lifecycle.

eliminates the core libraries unnecessary for mobile
devices. The virtual machine’s function is to translate
the Java code to something the operating system can

conversions take place
the software is run on the device. Each running
process has its own virtual machine to avoid bringing
down the entire device during a software crash [6].
The final and lowest layer is the Linux kernel and a

dware components. These
include drivers for the display, keypad, and
connectivity for WiFi or cellular signals [7].

OnStart() is called next and checks to see if the new
activity can become the main activity. If it can,
control is given to the onResume() method, otherwise
control transfers to onStop(). OnResume() retains
control as long as the program is running and is in the
foreground. If an activity is stopped or pushed to the
background, onResume() is called when it is to be
continued. In the situation that your activity is
pushed to the back, onPause() is called right before it
is suspended. This is an important method because it
preserves your activity while freeing up system
resources for the activity in the foreground [5]. It is

cause your activity is

paused, there is no guarantee that control will ever be
transferred back to it. It may even be terminated to
make room for a higher priority activity. OnStop() is
called after onPause() has been called on your
activity and it has moved to the background. From
here it may either be resumed later or destroyed. If
your activity is done running or is being dumped to
free resources, onDestroy() is called to completely
eliminate it [5]. Using these methods keeps valuable
system resources available to activities that need
them, and allows more complex programs to be run
on smaller devices.
 Services have a similar structure to that of
activities, but there are a few differences that become
obvious once explained. Methods like onResume(),
onPause(), and onStop() are unnecessary because
services always run in the background, and require no
user interface [5]. There is also a method called
onBind() that creates a persistent connection to a
service. This is used by an activity to access data
being provided by the various services such as GPS
information. For a service, onDestroy() is called
when no more clients are trying to start a service or
bind to it. These methods also help eliminate inactive
services that can accumulate system resources [5].

C. Coding an App
1) Built-in Code

There are several different applications and
services built into Android that are available to the
developer, and can be accessed using relatively
simple code. These include email, maps, contacts,
calendar, and more [6]. These can all be modified,
combined and changed in any way to create custom
applications [3]. The ones we are interested in are the
location and mapping tools. These are better known
as location based services (LBS). LBS use several
different methods to determine a mobile device’s
location. The first, and probably one of the older
methods is “Cell ID”. Cell phones are constantly
“pinging” the cell tower closest to them to maintain
communications. Each tower has a unique ID, and
they know their precise location. Cell towers have a
relatively small radius of only several miles. Since
they are constantly pinging these cell towers, they
can base their approximate location off of them [5].
Another method of accessing location is
triangulation. If a cell phone is in range of two or
more towers, by using several of these it can
approximate its location [5]. The final method for
making LBS possible is GPS. This method by far
gives the most precise location and altitude, but there
are a few downsides. It increases production costs in
devices, uses a significant amount of battery life, and
requires a direct view of the sky [5]. This can be a

problem if you are indoors or want to preserve your
battery. However, the GPS is still one of the most
popular methods.

2) Coding a Simple Map

On your first app, it is usually easier to only
work with one or a few Java classes if your app is
relatively small. This is usually done by creating a
class called “MainActivity”. This is the main class
that is called when your app is started, and can be
setup to do this in the project settings. This class has
several methods by default such as onCreate(),
onResume(), and onPause(). These are the same
methods discussed in Android activity lifecycle. Each
of these methods requires a default call to the super
class in addition to custom code. In our case, most of
the code will reside in onCreate(), since this is where
most of the program will be created when it is started.
OnResume() and onPause() should have code for
preserving the state of the app since these are
methods that are called when the app is either being
pushed to the back or being called back to the front.
Since a paused app may sometimes be terminated, it
is good to take care of storing important information
in onPause(). OnResume() can also contain code to
update location information if LBS are being used or
triggering the user interface to reflect other changes.

The best way to access the included maps
code is to use a MapView or MapActivity. Most
people initially think this is Google Maps, but it is a
variant of it. The actual Google Maps can be
integrated into any application, but you are not
allowed to modify it. That is where the usefulness of
MapView and MapActivity come in. Google requires
you to register with them when you use this, and they
give out an API key. The MapView library must also
be added as one of the used libraries into the project.
Initializing a map view in the code is quite simple to
do. The developer must create a new MapView
object by referencing it in the main.xml file and
assigning it to an object. This is done similar to any
other assignment statement in Java. The real wealth
of options comes in with the instantiation of the
“MyLocationOverlay” object. Method calls on this

LocationManager myLocation =
((LocationManager)getSystemService(Context.
LOCATION_SERVICE))
.
.
.
mMyLocationOverlay.getMyLocation()

myLocation.requestLocationUpdates(
myLocation.GPS_PROVIDER, 50000L, 5.0f, new
DispLocListener())

Figure 3 – Sample code for initial location and receiving
location updates.

public boolean onCreateOptionsMenu(Menu
menu){
boolean supretval =
super.onCreateOptionsMenu(menu);
 menu.add(Menu.NONE, 0,
Menu.NONE, getString(R.string.exit));

public boolean
onOptionsItemSelected(MenuItem item){
 switch(item.getItemId()){
 case 0:
 finish();
 return true;

Figure 5 – Code for creating an “exit” menu button.

mc.animateTo(
mMyLocationOverlay.getMyLocation())
mc.setZoom(16)

mvMap.setClickable(true)
mvMap.setEnabled(true)
mvMap.setSatellite(false)
mvMap.setTraffic(false)
mvMap.setStreetView(false)

Figure 4 – Code associated with MapController and MapView

object allow you to overlay things on the map, and
set many other flags to allow things like satellite and
traffic views [5].

Accessing location information is needed for
any app that uses a map. Accessing the initial
location is a simple process. A “LocationManager”
object is required, and a method call getting a system
service casts it to that object. Then the location
overlay object is used to perform the method call to
access the initial location and other related
information [5]. Updating location information is
therefore also a necessary part of apps using LBS.
Your current location changes as you move by
receiving updates from the LocationManager object.
The requestLocationUpdates() method has several
parameters that can be set for the type of location
provider, frequency of updates, and the listening
object for updates. For example, in Figure 3 my code
specifically uses the GPS provider for location
updates, requests that these updates occur every
50,000 milliseconds, the minimum traveled distance
required is 5 meters for an update to occur, and the
name of the listener object to call when there is an
update [5].

The MapView and MapController objects
then use these things to give us the visual output on
the screen. The MapController object can have
methods called on it that allow it do things like
animate to the current location, and set the default
zoom based off an integer value. The MapView
object also has many simple methods that can be used
on it. Simple methods like setSattelite() or
setStreetView() can trigger the satellite imagery or
the standard street map views. I used these particular
methods in my code for one of the menu buttons. I
allow my users to change back and forth between
standard map and satellite views based off a button
press.

Adding menu options is also a simple task in
Android. Android has the ability built in, so very
little is required of the developer. The method
onCreateOptionsMenu(Menu menu) is called, and is
passed a menu object. From there, a method call is
made to the super class, and menu items are added by
performing “menu.add” and passing the four

necessary parameters with it [3]. The two most
important of these are second parameter which is the
“ID” numbers for the buttons, and the fourth which is
the string label for it. The second method,
onOptionsItemSelected(MenuItem item), is a method
that performs a particular action when a button is
pressed [3]. It is passed a menu item and bases which
case it will choose off of its particular ID. In the case
of Figure 4, the “exit” button calls the method
finish() to close the app and release the resources it is

holding.
Storing all of this information requires the

use of a database. Android provides for this with
SQLite. It works with the SQLite libraries by
encapsulating all the knowledge of the database
within the library, and accessing it with Java
interfaces. The best approach is to put all of the
required logic for querying, updating and creating
databases into Java objects that can be called by the
classes that need to manipulate information [5]. The
required SQL string can be constructed by passing
pieces of information from the Java classes into
special methods, and then queried against the
database by calling another method.

IV. PROGRAMMING PROJECT

My proposed project set out to utilize some

of the provided API’s and libraries made available
with Android. This includes things like the Google
Maps functionality and the LBS for getting location. I
planned to overlay other related data over the map
relative to the particular location. I also intended to
get into SQLite for permanent storage on the Android
platform. This would be able to store data once the
app has stopped. Finally, I wanted to perform a few
algorithms on the location data to make some area
derived calculations.

In reality, I was only able to come part way
on these goals. I found a natural ending point for this
project somewhere between getting the LBS to work
with the maps and getting overlay items to work. I
realized partway through the project that working

with storage would not be feasible in this project due
to time constraints, and instead focused my energy on
getting it to where it is now.

V. FUTURE TRENDS

Currently there are many programming
languages being used on several different platforms.
Technology experts list fragmentation as one of our
bigger challenges currently in mobile software
development [7]. I see this trend continuing due to
the many different technologies currently available,
and the emergence of future ones. There will not be a
single unifying platform any time soon. What I could
see happening is the dominance of a few major
platforms such as Apple’s iOS, Android, and
Windows Mobile. But according to projections,
Android is predicted to be the market leader within
just 3 years [2].

I also see most phones moving toward smart
phone and touch screen technologies. Smart phone
sales are increasing faster than feature phone sales as
of late 2010, with sale increases 70% higher than that
of feature phones [2]. In addition to the apps
available to them, they have many more features.
This includes things such as email, web browsers,
GPS, advanced media capabilities and much more.
Electronic components are becoming small enough to
fit powerful processing capabilities in small devices.
However, battery density will need to increase to
keep up with the power consumption of these
devices. Currently, battery life only increases about
10% per year [7]. That is one of their largest
limitations.

I also believe thousands of new
programmers will continue to enter the field of app
development. There has been an ever lower barrier of
entry into software development because the tools for
programming are much easier to access [13]. Many
of them are free in the case of Android, and Android
even offers free publication to their app market [13].
Most people, including myself, cannot afford
expensive software suites and this is a large part of
Android’s appeal. With these free tools available,
younger programmers are more likely to try
programming. In addition to that, fewer mobile app
developers will have a formal computer science
background, and many will be self-taught [2]. I
believe this would have been true for me growing up
if such tools would have been available. I wanted to
learn technical things like app development, but did
not have the resources available. I find this to be true
for others, and believe this will have a significant
impact for aspiring programmers.

There has been an interesting development
in this area within the last year. In 2010, Google
released the App Inventor for Android. It is a visual
programming environment that aims to make app
development accessible to anyone through a simple
drag and drop interface. It consists of designing a
user interface with a visual “component designer”
and specifying underlying functionality with a
“blocks editor” that represents different activities [2].
It definitely lowers the barrier for entering into the
world of “software development”, and almost
eliminates the need for coding. It is a new type of
programming, and I believe this will become more
common as software evolves.

VI. CONCLUSION

In what started out as a small market for a

rich few, mobile communications has grown to be
something that almost everyone uses. Things have
changed enormously since the first bulky mobile
communication devices. From the early devices that
had to be mounted in car trunks, mobile phones have
evolved into much smaller and efficient hardware.

 In just the last few years the mobile world
has changed significantly, and we are now
performing tasks on mobile devices that we never
could previously. More and more computing power is
being fit into smaller devices, and developers are
writing complicated apps to take advantage of these
functionalities. Android is a solid platform that is
helping bring about this change in computing. In its
short existence, it has entered into the world of
mobile phone platforms and has taken a large share
of the market. With its easy to use development tools,
low startup costs, and included API’s, many more
people will enter the world of software development.
For me, it was a relatively easy to learn platform for a
beginning mobile developer.

In the future, new languages and platforms
will likely emerge and technology fragmentation will
continue. This will also provide more points of entry
for aspiring developers, and more young
programmers will likely be joining the community. It
is an exciting time to be involved in software
development.

REFERENCES

[1] ACM. (2010). Introduction to processing on
Android devices. ACM , 137.

[2] Butler, M. (2011). Android: Changing the Mobile
Landscape. IEEE Pervasive Computing , 4-7.

[3] Felker, D. (2011). Android Application
Development for Dummies. Indianapolis: Wiley
Publishing.

[4] Grønli, T.-M., Hansen, J., & Ghinea, G. (2010).
Android vs Windows Mobile vs Java ME: a
comparative study of mobile development
environments. PETRA '10 Proceedings of the 3rd
International Conference on PErvasive
Technologies Related to Assistive Environments .

[5] Rodgers, R., Lombardo, J., Mednieks, Z., &
Meike, B. (2009). Android Application
Development. Sebastopal: O'Reilly Media, Inc.

[6] Speckmann, B. (2008, April 16). The Android
mobile platform.

[7] Tarkoma, S., & Lagerspetz, E. (2010). Arching
Over the Mobile Chasm: Platforms and Runtimes.
Computer .

[8] Xuguang, H. (2009, November 2). An
Introduction to Android.

[9] Fling B. 2009. Mobile design and development.
1st ed. Sebastopol, Calif.: O’Reilly.

[10] Oliver E. 2009. A survey of platforms for mobile
networks research. SIGMOBILE
Mob.Comput.Commun.Rev. 12(4):56-63.

[11] Zurmehly J. 2010. Personal digital assistants
(PDAs): Review and evaluation. Teaching with
Technology 31(3):179-82.

[12] Farley, T. 2007. The Cell-Phone
Revolution.AmericanHeritage.com 22(3)

[13] Bultan, T. (2010). Software for Everyone by
Everyone. Santa Barbara, California, USA.

[14] Wolpin, S. (2007). Hold the Phone.
AmericanHeritage.com 22(3)

A. REFLECTION

My area of research, application
programming in Android, was largely affected by
several of my previous courses in the Computer
Science Department at Saint John’s University. First,
I used my programming knowledge that I picked up
from the CSCI 161 course. It is an intro level course
that introduced me to programming in Java. CSCI
162 continued this experience in programming and
taught me further about various types of data
structures. CSCI 230 was the biggest benefit for this
project. This class helped develop my programming
and problem solving skills the most. It was the course
that taught me a lot of new things about programming
in Java, working with a team and common software
development practices. It tied all of these ideas
together and many concepts from previous courses.
Finally, my time as an intern last summer at Country
Financial in Arden Hills, MN helped solidify some of
my application development skills from working with
an experienced team for several months.
 As mentioned above, I benefited
significantly from my coursework in CSCI 161 and
162. These two courses gave me the basic foundation
on which the rest of my computer science knowledge
rests. These two courses taught me programming
from the ground up, because I had absolutely no prior
experience. I especially struggled through CSCI 161
learning concepts very unfamiliar to me, and trying to
understand the object-oriented approach to
programming that is used in everything I do today. I
also learned to problem solve effectively in this
course. The course presented a wide variety of basic
programming problems for us to solve, and it
adequately prepared me for the larger projects that I
would later work on. CSCI 162 continued to help my
problem solving skills since we had regular lab
meetings. We learned about more complex data
structures, and were given the chance to apply them
in lab.
 CSCI 230 was one of the most beneficial
classes to me while at CSB/SJU. This class tied
together almost all of my previous coursework and
also introduced some new concepts. The biggest
benefits from this class was the programming
experience I gained from working on the online bank
project, balancing between working with a team and
alone, and having to teach myself new things as
problems came up. There were also numerous other
benefits such as learning the Unified Modeling
Language (UML) and gaining experience with the
Eclipse Integrated Development Environment (IDE).
The experience in Eclipse was valuable because it is
the environment I used to program my Android
application. It taught me useful skills like building a

graphical user interface (GUI) with a visual editor,
and debugging line by line.
 My internship at Country Financial also
proved to be invaluable. While I did not program
specifically in Java (the language for my project),
their use of VB.NET was close enough that I could
keep working on my problem solving skills. They
also put a lot of emphasis on problem solving for the
interns during my time there. We were given the
chance to solve a wide variety of programming
problems, and were taught the benefits of effectively
using a debugger in Visual Studio. This becomes
especially important the larger a project gets. Finally,
I got to work with senior developers for several
months. Sharing their experience and getting to work
on real software that they helped me grow as a
developer. All of this real life experience gave me
much more confidence in these areas.
 The current project has tied several of these
skills and concepts together, and is improving my
understanding of them. In particular, the use of the
Java programming language has made the transition
extremely easy for this project. Working in Android
has also allowed me to further develop my
programming and problem solving skills during a
semester when most of my other coursework is on
paper. I have also gained a better understanding of
Eclipse. When I first used it in CSCI 230, I was just
being introduced to the software, so my knowledge
was fairly limited. From working with Visual Studio
at Country Financial, I was able to apply much of that
knowledge to my current project.

 It is not that my other courses did
not contribute to benefiting this project. That would
not be true. They have all in some way or another,
but the courses I have listed have had the most
notable impact, or were the first ones to come along
to provide a benefit for a particular skill. Not
everything I have learned has been used on this
project, but more concepts have been applied than I
would have expected. Without the tools I learned
from my intro courses to some of the more advanced
skills in my upper division classes, every course has
played some role in my project, and has been
important to my education overall.

