
Distributed Computing

Auston O Schendzielos

December 15, 2014

Contents

1 Introduction 2

2 The Problem: Moore’s Law 2

3 Parallelism 2
3.1 Types of Parallelism . 2
3.2 Benefits of Parallelism . 3

4 Differences Between Parallel and Distributed Systems 3

5 MapReduce 4
5.1 Programming Model . 4
5.2 A Basic Program . 4
5.3 Execution . 4
5.4 Locality . 4
5.5 Fault Tolerance . 5
5.6 Architecture Models . 5
5.7 Software Implementations of MapReduce . 5

6 Demonstration 5
6.1 Materials . 5
6.2 Procedure . 6

7 Future Trends 6
7.1 Programming Model . 6
7.2 File Systems . 7
7.3 Performance . 7

8 Conclusion 7

9 Appendix 7

List of Figures

1 MapReduce execution. Input is broken into splits, and the user’s map function is applied. The
result, called intermediate data is then sorted and put through the user’s reduce function. The final
result is stored in the HDFS . 4

2 An illustration of the Architecture models described in section 5.6 5

1

Abstract

For years, the computing industry has ex-
pected continued increases in CPU perfor-
mance as predicted by Gordon Moore. Un-
fortunately, Moore’s law is likely to end, but
that does not mean the end for computing
performance. Several alternative software op-
tions have presented themselves in the form
of parallel computing. This paper focuses on
one of those options: Distributed Comput-
ing/Systems. One such implementation of dis-
tributed systems is referred to as ”MapReduce”
and while it is gaining popularity, we will show
that there are better, previously existing imple-
mentations that perform better.

1 Introduction

Distributed computing is defined as any computing
system that involves multiple independent computers
working together on one process. There’s been a large
push in the last 20 years for distributed computing for
a number of reasons. Firstly, there’s a strong need for
parallelism, which will be covered in the following sec-
tions. Additionally, many programming models could
use the additional work to speed up lengthy compu-
tations. This paper will cover the technical details of
how programmers use software to exploit parallelism
and achieve their goals.

2 The Problem: Moore’s Law

Since 1965, the number of transistors integrated on
a processor has nearly doubled every two years (ap-
prox. 1.995x). The trend has been sustained by de-
signing architectures that could accommodate an in-
crease in transistors, and subsequently, and increase in
clock speeds, or switching speed of transistors. While
the number of transistors on a chip has continued to
increase, clock speed growth has stagnated at speeds
generally in the 3 GHz range [6]. This stagnation, was
observed around 2003 for Intel-developed processors,
and would lead to utilization of multiple cores (referred
to as parallelism) [6]. There are three factors that con-
tribute to this decline: the Instruction-level parallelism
wall, memory wall, and power wall.

One limitation, the instruction-level parallelism
wall, is the result of parallel resources at the hard-
ware level that have already been consumed. In the
past, ” . . . computer architects (and compiler writers)
worked diligently to find ways to automatically extract
parallelism . . . from their code” [6]. Some exam-
ples of instruction-level parallelism include: pipelining,
and hyper threading. Unfortunately, these techniques
no longer yield nearly as much parallelism, and ” . . .

most computer architects believe that these techniques
have reached their limit” [6].

Another limitation is the memory wall. The mem-
ory wall results from off-chip memory not increasing
as fast as processing speeds [6]. The reasons for this
include: ”slow and power hungry off-chip communica-
tion, and difficulty incorporating additional pins in the
integration package” [6].

Lastly, the most significant barrier to the increase
in computing power is the power wall. According to
McCool, ”The power wall results because power con-
sumption (and heat generation) increases non-linearly
as the clock rate increases, and typical heat dissipa-
tion methods (air cooling etc.) can no longer deal with
the power generation”. More specifically, the amount
of power, when not dissipated efficiently, causes false
bit-flips. ”Whenever the thermal noise causes crossing
of the value of the actual logic threshold voltage . . .
a false bit flip occurs” [4]. In simpler terms, whenever
there is too much heat traveling across a chip, it has the
potential to cause the wrong transistors to switch their
bit (binary) values. This leads to indeterminate, and in-
correct processing. According to Kish, the only way to
get around this effect would be either to give up increas-
ing the integration density, that is itself Moores law, or
to give up increasing the clock frequency. Clearly, nei-
ther of these two alternatives attract many followers,
and the work-around is to make parallel microproces-
sors, and/or distributed systems.

3 Parallelism

The foundation of every distributed system is an im-
plementation of parallelism, and the core principle of
parallelism is using multiple compute-units to perform
a task that could be done on one. This can be achieved
through both software and hardware. Generally, in-
creasing compute-units also correlates to an increase in
compute time, but that is not always the case. There
are several factors that prevent parallelism from being
efficient. That will be discussed later, for now, it is im-
portant to understand the types of parallelism that can
occur, speedup, and concurrency.

3.1 Types of Parallelism

There are two hardware mechanisms that are utilized
by software to achieve parallelism.

The first of which is thread parallelism. Thread par-
allelism is an implementation that allows each worker
(core or node) to have its own flow-of-control i.e. each
worker operates its own operations on the data [6].
Facilitating thread parallelism requires thread paral-
lelism at the lowest level, and software threads at a
higher level. Software threads are simply virtual hard-
ware threads. An op- erating system typically enables

2

many more software threads to exist than there are ac-
tual hardware threads by mapping software threads to
hardware threads as necessary [6]. The ability to write
multiple threads at once is crucial for speeding up the
performance of par- allel programs.

Vector parallelism on the other hand is an imple-
mentation that uses the same flow-of-control for each
worker by performing single operations replicated over
collections of data [6]. The paradigm can be broken
down into two parts: vector instructions, and vector
registers. Vector registers holds a small array of ele-
ments where each vector instruction is performed on
the registers one at a time [6].

A way to understand these two concepts is to imag-
ine Bart Simpson when he is writing lines on the chalk-
board during detention. There are two ways for him to
write the lines: the first is to write one word at a time
for each line. The second way is to write each line indi-
vidually. These scenarios represent vector parallelism
and thread parallelism respectively with the exception
that in a parallel environment there would be multiple
workers completing tasks at the same time.

3.2 Benefits of Parallelism

The most important metric used in parallel computing
is speedup. Speedup is calculated by taking the time
a program takes to run serially divided by the time it
takes to run in parallel. A similar measure, efficiency,
is measured by taking the speedup divided by the num-
ber of workers. There are two limits that determine the
amount of parallelism that is possible given a program
and a set of workers.

The first is Amdahl’s law. Amdahl’s law is that
” . . . the effort expended on achieving high paral-
lel processing rates is wasted unless it is accompanied
by achievements in sequential processing rates of very
nearly the same magnitude” [6]. To put it simply, a
computational program will always be limited by the
serial work in the program. Serial work is work that
cannot be parallelized. This usually comes in the form
of dependency. To illustrate Amdahl’s law, imagine if
you had a program that was one percent serial, and
99 percent parallel and it took 100 seconds to run with
one worker. If you were to add another worker, the pro-
gram would take approximately 46 seconds (one second
for the serial work, and 45 for the parallel). Each ad-
ditional worker would continue to reduce the time it
takes to complete the parallel work until the only over-
head invovled in computing the program is one second,
or the time it takes to compute the serial work. Am-
dahl’s law leads to significantly less return for each ad-
ditional worker which discourages increasing the num-
ber of workers in a system.

Fortunately, Gustafson-Barsis’ law restores the in-
centive to increase the workers in a system because it

takes problem size into account. They state that ” . .
. speedup should be measured by scaling the problem
to the number of processors, not by fixing the prob-
lem size” [6]. Essentially, each additional unit adds
the same amount of parallel work as the first original
worker in the same amount of time.

Both of these limits are important to the perfor-
mance of a parallel system. Every parallel system aims
to optimize these metrics, and without these benefits,
the end of Moores Law would be closer to a death sen-
tence to the computing industry.

4 Differences Between Parallel
and Distributed Systems

Parallelism needs to be incorporated through software,
and there are two software systems that incorporate
it: Parallel systems, and distributed systems. Dis-
tributed systems introduce the idea of a ”workstation”
which means that each node can run processes on their
own. This is in contrast to Parallel systems where each
node dedicates itself to the current process. Because of
this difference there are several defining characteristics
about each system: resource management, functional-
ity, and interprocess communication.

Acceptability determines how resources are ac-
quired and used in either system. For the parallel sys-
tems, utilization drives the acquisition of resources [8].
When a program is running, a parallel system will not
allow any idle resources to be used for other applica-
tions [8]. When a distributed system has idle resouces,
it allows them to be used for other purposes [8]. Both
systems want to . . . [maintain] the parallelism and
the structure of the underlying system [to be] hidden
from the users [8]. This is sometimes referred to as a
serial illusion [6].

Functionally, distributed systems have ” . . . func-
tional overhead on nodes which have been dedicated to
parallel applications” [8]. This is due to the fact that
distributed nodes try to provide full functioning work-
stations while maintaining parallel resources. On the
other hand, compute-nodes in a parallel system ” . . .
only need the functionality required to run parallel ap-
plications” [8].

Lastly, differences in interprocess communications
gives parallel systems an advantage over distributed
systems. This is due in large part to memory manage-
ment differences in each system. ”In the parallel sys-
tem, each node has a shared memory system which
allows for quicker, more efficient communication” [8].
Distributed systems have completely separate memory
from each other and must rely on slower networked
communications [8].

3

5 MapReduce

MapReduce is a very popular paradigm because of its
simplicity. It has only two functions that the user needs
to worry about: the Map, and Reduce functions. Both
functions are completely customizable, and both func-
tions are fundamental in providing parallelism to the
distributed cluster. In the following sections, the de-
tails of how MapReduce utilizes a distributed system
will be described in detail.

5.1 Programming Model

Figure 1: MapReduce execution. Input is bro-
ken into splits, and the user’s map function is
applied. The result, called intermediate data
is then sorted and put through the user’s re-
duce function. The final result is stored in the
HDFS

The
over-
all
com-
pu-
ta-
tion
of
a
MapRe-
duce
pro-
gram
in-
volves
a
set
of
key/value
pairs,
and
pro-
duces
a set of output key/value pairs. From there, the com-
putation is broken into several steps. The first part of
the execu- tion is Map which takes the original input
and produces a set of intermediate key/value pairs i.e.
intermediate values that have the same key are grouped
together [3]. The intermediate values are then passed
to the reduce function which merges values to find a
possible smaller set [3]. The reduce functions output is
the final output of the computation.

Both the Map and Reduce functions are parallel
patterns that invoke vector parallelism. This is be-
cause both map and reduce are vector functions that
are given to the workers, giving each worker the same
flow of control.

5.2 A Basic Program

One very simple program that is commonly used is a
word count program. The program essentially takes a
text document and counts the occurrence of each word.
MapReduce accomplishes this task as such: the map

function emits each word plus an associated count of
occurrences. The reduce function sums together all
counts emitted for a particular word [3]. The program
is widely used as a benchmark to test different imple-
mentations of MapReduce (Mantha) and will be used
to demonstrate a Hadoop implementation.

5.3 Execution

In general, all implementations of the MapReduce work
similarly to the word-count program in that each part
is broken down by the Map function and then further
reduces the input into the same or smaller files. A more
detailed execution algorithm goes like this:

1. The original key/value pairs are split into
M pieces of user-controlled sizes between
16/64MB [3]. M does not have to correspond to
the number of nodes in the system. Then sev-
eral copies of the program are distributed onto a
cluster of machines [3].

2. One copy is given the master designation. There
are M tasks, and R reduction tasks that the mas-
ter assigns these tasks to idle machines [3].

3. The workers that are assigned to the map tasks
take the contents of the split and runs them
through the user-defined function. The interme-
diate key/value pairs are buffered in memory [3].

4. The buffered pairs are then written to a local disk,
partitioned into R regions, and then the loca-
tion of the stored data is given to reduce workers
through the master node [3].

5. Once a reduce worker knows a location of inter-
mediate pairs, it will find that partition and ex-
tract all its data. It then sorts the values by keys
and all occurrences of the same key are grouped
together. The sorting is needed because typi-
cally many different keys map to the same reduce
task [3].

6. The reduce worker takes the intermediate data it
collected and iterates each pair through the users
reduce function. The output is appended to the
final output file [3].

7. When all tasks are completed, the master notifies
the user [3].

5.4 Locality

Usually, each implementation of MapReduce comes
with a Global File System (GFS). This compensates
for the scarcity of network bandwidth in the distributed

4

environment. When running large MapReduce opera-
tions on a significant fraction of the workers in a clus-
ter, most input data is read locally and consumes no
network bandwidth [3].

5.5 Fault Tolerance

One of the large benefits to using the MapReduce
framework is its ability to handle disk failures grace-
fully. In a MR system, if a unit of work fails, then
the MR scheduler can automatically restart the task
on an alternate node [7]. In the MapReduce frame-
work, the master pings every worker periodically [3].
Once a worker is deemed corrupt, the master notifies
the other workers, the master re-executes the work on
that machine on another node, and the workers make
sure not to accept output from that node [3].

5.6 Architecture Models

Figure 2: An illustration of the Architecture mod-
els described in section 5.6

Another
ben-
e-
fit
of
the
MapRe-
duce
frame-
work
is
its ability to utilize multiple resources from around
the world. The question then becomes a matter of
how to architect the MapReduce to optimize its perfor-
mance.There are three architectures to run Mapreduce:

Local MapReduce (LMR) All data is located in a
centralized cluster and perform MapReduce on
said cluster. This was how MapReduce was in-
tended to be run [1]. ”However, large-scale wide-
area data transfer costs can be high, so it may
not be ideal to move all the source data to one
location . . .” [1].

Global MapReduce (GMR) In this architecture,
the data is pushed to a literal global file system
that is shared amongst all nodes–even if they are
thousands of miles apart. Once all the data is
in the file system, a MapReduce is run over all
the nodes. This is generally inefficient due to in-
termediate data having to potentially transferred
thousands of miles to another node [1].

Distributed MapReduce (DMR) The data in this
architecture stays with it’s original cluster. An
initial MapReduce is run on the cluster’s local in-
formation, and then a global MapReduce is per-
formed on all the clusters in the system. This ar-

chitecture solves the problems of both LMR and
GMR by combining their strengths (i.e. LMR
is good locally, GMR is needed for wide-spread
computation) [1].

Choosing an architecture depends entirely on the lo-
cality of resources, and the amount of workload needed
for the MapReduce program. If the resources are pri-
marily in one cluster it would make sense to run in
LMR regardless of the problem size. If the resources
are global but the program is simple, GMR works best,
and if the program is more complicated, a DMR is bet-
ter suited [1].

5.7 Software Implementations of
MapReduce

The most popular implementation of MapReduce in
software is Apache’s Hadoop. It runs a no-frills ver-
sion of MapReduce that is insignificantly different than
the generic form of MapReduce. The biggest difference
is the Hadoop Distributed File System which takes the
place of the GFS in section 6. It does come with its
pitfalls: ”The main limitation of Hadoop MapReduce
is that it forces applications into a very rigid model” [5].
According to Mantha et. Al. this means that Hadoop
is ”limited in terms of extensibility”. Mantha et. Al.
propose a different MapReduce software referred to as
Pilot-MapReduce.

6 Demonstration

For my demonstration, I built a Raspberry Pi cluster
and ran Hadoop on it. The project did not commplete
in time for the writing of this paper, but I will give
an explanation of the process and materials needed to
replicate my project.

6.1 Materials

In order to complete this project, you will need the
following items:

Raspberry Pi For my project, I used four Rasp-
berry Pi computers. Three are Model B+’s and
the other is a Model B. Both models have 512
MB of SDRAM, and their processors compute at
700MHz. The Pi’s use SanDisk cards for their
hard drives, and the B+’s require a micro-SD
card, but the B requires a regular sized SD-card.
The B+’s also have several additional attach-
ments, but none are relevant to this project. The
SD cards must have 8 GB or more of storage.

Ethernet Switch You will need a powered ethernet
switch that has at least 4 ports. Ideally, you
would get a 6 port switch so you can use 4 for

5

the cluster itself, another port for your own per-
sonal computer, and the last port for an internet
connection.

USB Hub The USB hub must have 4 or more ports.
The Pi’s are powered by a micro-USB port on the
mother-board, and so a hub with 4 male-USB to
male-micro-USB cords are necessary for powering
the cluster. The hub MUST be powered, other-
wise the machines will not draw enough wattage.

Peripheral Devices You will need a keyboard and
monitor for configuring the Raspberry Pi’s at
least for the initial start-up. After the Pi’s have
been SSH enabled, you can ssh from a personal
computer for a better interface.

6.2 Procedure

1. The first part of setting up the cluster is format-
ting the SD cards. Using your own personal ma-
chine, format the SD cards using SanDisk’s for-
matter. If you use your machine’s native format-
ter you will corupt the disk.

2. After the disk has been formatted, you will need
to download and install an operating system onto
the disk. You can go to raspberrypi.org for down-
loads. I chose to use the Raspbian operating sys-
tem for my project.

3. Once the operating system is on the card, eject
it from your personal computer and insert it into
the card slot on the pi. Then power the machine
and hook up a keyboard and monitor to the pi.
The initial startup brings you to a configuration
screen where you should enable SSH. Upon com-
pletion, you should remote into the machine using
SSH from your own personal machine.

4. Now you will want to update/upgrade the sys-
tem, and prepare the system with the software
needed to run Hadoop. Hadoop runs exclusively
on Java, so you will need to download the newest
version of Java.

5. Create a static IP address so that the other nodes
can communicate with the current node.

6. Install Hadoop by going to Apache’s website.
They will want you to download Hadoop from
a mirror site, and personally, the mirror sites
did not work for me, so I downloaded from their
archive and used the SCP command to transfer
the file from my machine to the pi.

7. After Hadoop has been installed, you will now
want to run the pi in pseudo-distributed mode.
Configure the environment variables so that this

occurs using the instructions on Hadoop’s web-
site.

8. Now that the first node is setup, repeat steps 1
through 5 on another node, but this time you are
going to configure the node to be a slave node.

9. Once that node has been completely configured,
make an image of it’s hard drive and install it
onto the remaining SD cards.

10. After each node has Hadoop running on it’s sys-
tem, configure each node so it can communicate
with the others in the system. You will want to
setup automatic login for ssh so that you do not
have to do this manually when you run jobs.

11. Now you are ready for execution. Give the na-
menode (first node you configured) a MapReduce
job, and it will distribute it to the clusters. I
used a wordcount program and downloaded books
from Project Gutenberg.

7 Future Trends

In the 1970s, the database community faced a choice
in regards to aprogramming model. The choice was
between stating what you want and presenting an algo-
rithm for data access. They would eventually decide on
going the former route, and the paradigm referred to
as relational programming would prevail for 30 years in
the database community. The reasons the database re-
search community chose relational programming mod-
els are similar to why many companies and researchers
are moving to parallel-relational databases instead of
Hadoops MapReduce.

7.1 Programming Model

MapReduce is analogous to the Codasyl of the time
because it uses an algorithm to extract data. Both
the Map and Reduce functions are user defined, which
means every time a program is run, the user must spec-
ify these operations. At the time of the database com-
munitys decision, Codasyl was considered the assem-
bly language of DBMS access. Unsurprisingly, many
MapReduce users share code fragments to do common
tasks, such as joining data sets” [7]. Some MapRe-
duce community projects attempt to implement high-
level languages on top of the current interface to solve
this issue. This begs the question; why not just use a
parallel-relational database in the first place?

Additionally, a number of distributed computing
community members, including it’s creator, Google,
have removed MapReduce from their software entirely.
Cloudera’s analytical database, Impala, is created us-
ing the Hadoop File System (HDFS) [9], and claims

6

to ”leverage the flexibility and scalability strengths of
Hadoop” [2]. Interestingly, the MapReduce layer is
not included in this software which means Impala’s
creators do not believe that MapReduce is a strength
of Hadoop [9]. That is discouraging for Hadoop, but
should users be weary of MapReduce itself? ”Google
announced that mapReduce is yesterday’s news and
they have moved on . . . because they wanted
an interactive storage system and MapReduce was
batch-only.” [9] Hence, the driving application behind
MapReduce moved to a better platform a while ago.
Now Google is reporting that they see little-to-no future
need for MapReduce [9]. Needless to say, MapReduce
may be on it’s way out, but is Hadoop?

7.2 File Systems

HDFS remains the only usable part of Hadoop, but
parallel DBMS’s remain the better option. Because of
Hadoop’s prerogative to be simple, it left the user with
a lot of work to do in order to efficiently manage the
system. In a parallel DBMS, ”B-tree indexes [are used]
to accelerate access to data,” but in MapReduce sys-
tems, ”the programmer must implement any indexes
that they may desire to speed up access to the data
inside of their application” [7].Correspondingly, data
distribution in a Hadoop system again must be defined
by the user while the parallel DBMS’s do this automat-
ically. Even Hadoop’s approach to data access excludes
itself from becoming useful in the future. ”. . . from
the point of view of a parallel SQL DBMS, HDFS is
a ’fate worse than death’. A DBMS always wants to
send the query to the data and never the other way
around” [9]. Since HDFS is essentially the other way
around, it is unlikely that an SQL interface will be prac-
tical.

7.3 Performance

In multiple studies on the performance of the two sys-
tems, both had MapReduce and parallel DBMS’s had
unique advantages. The studies used a common grep
task to compare performance on varying numbers of
compute nodes. In general, Hadoop systems took less
time to set up than did the parallel DBMS’s. But
the performance of the task at hand was significantly
faster using the parallel DBMS. One of these studies
gave a glimpse of hope to MapReduce users by saying:
”[MapReduce]-style systems excel at complex analytics
and [extract, transform, and load] tasks” [10]. This at
least leaves room for Hadoop and MapReduce users to
continue on with their path, but it severely limits the
advertised utility of Hadoop.

8 Conclusion

Ultimately, distributed systems remains a great path
for solving the end of Moore’s law via parallelism.
MapReduce may not be the best paradigm to use, but
it is still useful for teaching purposes because of it’s
simplicity.

9 Appendix

Throughout the procession of this course and this as-
signment, I have utilized several skills and incorporated
knowledge gained from other classes I’ve taken during
my time here at Saint John’s University. The bulk of
my knowledge and skills came from Parallel Comput-
ing, Networks, and the internships I’ve had.

Parallel Computing equipped me with the knowl-
edge I needed to do this research, and to do this project.
I actually referrenced the textbook used for that class
for this paper. I also used some of the command-line
skills from that class for the project.

The Networks course that I took this semester
helped me understand some of the networking princi-
ples involved in making a cluster. This actually worked
both ways as I would learn several new skills in my
project and be able to apply them to my Network as-
signments.

Lastly, the internships I had gave me skills I used
to build the cluster. Most of my command-line skills
came from my first internship.

References

[1] Michael Cardosa, Chenyu Wang, Anshuman
Nangia, Abhishek Chandra, and Jon Weiss-
man. Exploring mapreduce efficiency with highly-
distributed data. In Proceedings of the Second
International Workshop on MapReduce and Its
Applications, MapReduce ’11, pages 27–34, New
York, NY, USA, 2011. ACM.

[2] Cloudera.

[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. Com-
mun. ACM, 51(1):107–113, January 2008.

[4] Laszlo B Kish. End of moore’s law: thermal
(noise)death of integration in micro and nano elec-
tronics. Physics Letters A, 305(34):144 – 149,
2002.

[5] Pradeep Kumar Mantha, Andre Luckow, and
Shantenu Jha. Pilot-mapreduce: An extensible
and flexible mapreduce implementation for dis-
tributed data. In Proceedings of Third Interna-
tional Workshop on MapReduce and Its Applica-

7

tions Date, MapReduce ’12, pages 17–24, New
York, NY, USA, 2012. ACM.

[6] James Reinders Micahel McCool, Arch D. Robi-
son. Structured Parallel Programming.

[7] Andrew Pavlo, Erik Paulson, Alexander Rasin,
Daniel J. Abadi, David J. DeWitt, Samuel Mad-
den, and Michael Stonebraker. A comparison of
approaches to large-scale data analysis. In Pro-
ceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD
’09, pages 165–178, New York, NY, USA, 2009.
ACM.

[8] Arthur B. Maccabe Rolf Riesen, Ron Brightwell.
Differences between distributed and parallel sys-
tems, 1998.

[9] Michael Stonebraker. Hadoop at a crossroads?

[10] Michael Stonebraker, Daniel Abadi, David J. De-
Witt, Sam Madden, Erik Paulson, Andrew Pavlo,
and Alexander Rasin. Mapreduce and paral-
lel dbmss: Friends or foes? Commun. ACM,
53(1):64–71, January 2010.

8

