
Ray Tracing: State of the Field Report

Justin Springer

Abstract

Ray tracing is a rendering technique used to generate images. These images are of a significantly higher

quality than images produced through rasterization techniques. In order to produce realistic images and

dynamic scenes, ray tracing techniques must become the standard used in the computer graphics industry.

Information was gathered on hardware improvements, acceleration structures, and expert opinions that

suggests ray tracing is a viable alternative to rasterization, with the potential to surpass ray tracing in

popularity and usage. With the continual advances in research on topics related to ray tracing, ray tracing

techniques will become the standard rendering techniques used to produce high quality images and dynamic

scenes.

1

Contents

1 Introduction 4

2 Survey of Computer Graphics 4

2.1 Quick Timeline . 4

2.2 Rasterization Algorithm . 5

2.3 Ray Tracing Algorithm . 5

3 Current State of the Field 6

3.1 OpenGL Standard . 6

3.1.1 Z-Buffer Algorithm . 6

4 Technical Analysis: Acceleration Structures 6

4.1 Questions when using a Ray Tracer . 7

4.2 Current Strategies . 7

4.3 KD-Trees . 8

4.3.1 Description and Analysis . 8

4.3.2 Surface Area Heuristic . 9

4.3.3 Issues and Open Research . 9

4.4 Bounding Volume Hierarchy . 10

4.4.1 Description and Analysis . 10

4.4.2 Issues and Open Research . 11

5 Future Trends 11

5.1 Rasterization and CPU/GPU Improvements . 12

5.2 Acceleration Structure Trends . 12

5.3 Ray Tracing Programs . 13

6 Demonstration 13

6.1 Image Comparisons . 13

6.2 Build Speed And File Size . 15

6.3 Issues With Demonstration . 16

7 Conclusion 16

A Previous Work 17

2

List of Figures

1 “Left: A two-dimensional kd-tree. Internal nodes are labeled next to their split planes and

leaf nodes are labeled inside their volume. Right: A graph representation of the same kd-tree”

taken from [2]. 9

2 Examples of a BVH taken from [9] . 11

3 A sphere in front of three different colored planes rendered using rasterization. 14

4 A sphere in front of three different colored planes rendered using ray tracing. 14

5 A sphere in front of three different colored planes rendered using rasterization with ambient

occlusion. 14

6 A sphere in front of three different colored planes rendered using rasterization with approxi-

mate ambient occlusion. 14

7 A glossy sphere in front of three different colored planes rendered using ray tracing. 14

8 A glass sphere in front of three different colored planes rendered using ray tracing. 14

9 Three shapes in front of three different colored planes rendered with rasterization. 15

10 Three shapes in front of three different colored planes rendered with ray tracing. 15

11 Four shapes in front of three different colored planes rendered with rasterization. 15

12 Four shapes in front of three different colored planes rendered with ray tracing. 15

13 A ceramic cup. 15

3

1 Introduction

Computer graphics have evolved to the point where

it is used in everyday life on a daily basis. Entertain-

ment is the largest provider of these sources, espe-

cially video games and movies. There are more de-

velopments involving computer graphics being made

in other fields as well, such as chemistry and biology.

So far, video games have pushed the limit of what

computer graphics can achieve and these advances

are continuing today. With a general understanding

of the algorithms behind computer graphics, we are

able to see how the advances continue to progress. We

are also able to theorize how long this progression

will continue and what technological advancements

are necessary for the next step in computer graphics

to unfold. An analysis of ray tracing algorithms and

a comparison to other computer graphics algorithms

will unveil a leading trend that may demonstrate the

next step in computer graphics. All this information

will lead to the conclusion that ray tracing algorithms

will continue to improve on the computer graphics of

today.

2 Survey of Computer Graph-

ics

The idea for ray tracing began when Arthur Appel

began developing ways to automatically shade line

drawings. The line drawings of the time left much

up to the imagination. Solid lines and dashed lines

were used to show the third dimension of an object,

but it was impossible to know where the object was

in relation to other objects. Appel believed shading

could ”specify the tone or color of a surface and the

amount of light falling upon that surface from one

or more light sources“ [1]. He developed algorithms

that began by projecting lines of sight from the ob-

server to the object. He would determine if the lines

pierced an object and the amount of light the object

was receiving from the pierced side. He used this in-

formation to draw symbols on the line drawing, with

larger symbols meaning less light. This idea was the

beginning of ray tracing and led to the development

of ray tracing algorithms in use today.

2.1 Quick Timeline

Computer Graphics started with Ivan Sutherland’s

Sketchpad in 1963. The Sketchpad “allowed interac-

tive design on a vector graphics display monitor with

a light pen input device [7]. Later on in the 60s Au-

thor Appel developed a few algorithms that are con-

sidered the pre-cursors to ray tracing. At this point

in time, computer graphics amounted to the ability to

draw lines and later circles. Beginning in the 70s, ren-

dering and shading was discovered along with visibil-

ity algorithms that determine which pixels are visible

to the viewer. A few years later, recursive ray tracing

was developed by Turned Whitted and became popu-

lar. Old school arcade games like Pong were examples

of computer graphics in this era. Research into com-

puter graphics continued through the 80s with some

specific research being done in ray tracing. Start-

ing in the 90s, “OpenGL became the standard for

graphics APIs and has continued to be a leader in

4

this area [7]. The Nintendo 64 was released a few

years later and demonstrated the power of computer

graphics in the 90s. Doom and Quake also hit stores

in the late 90s and here we see video games pressuring

the upper bounds of computer graphics [7]. Today,

graphics cards are becoming increasingly more pow-

erful as well as computer processors, and this has led

to an increase in the quality and efficiency of gener-

ating computer graphics.

2.2 Rasterization Algorithm

Although ray tracing began in the 60s, the algorithms

were inefficient and required excessive computational

power. This allowed rasterization algorithms to be-

come popular, due to the efficiency and less-intensive

computation costs of running the algorithm. Raster-

ization algorithms consist of looping over the objects

in the scene and computing which pixels are covered

by the object [5]. The pixels are colored to match

the object and stored until they are displayed. Depth

buffers are used to determine which object is closer

to the screen and ensures the pixel color matches the

closest object. The process of rasterization has be-

come analogous to a pipeline. The scene is created

using triangles, local coordinates are transformed into

world coordinates, and lighting is applied. After-

wards, the scene is clipped to exclude objects outside

of the viewing area and the pixels values are deter-

mined. The last step involves applying the colors and

textures to the pixels. This pipeline was a standard

in computer graphics and “lends itself to highly par-

allel hardware implementations” [5]. As technological

advances increased the speed and efficiency of graph-

ics processing units (GPUs), the graphics pipeline be-

came virtualized onto the GPUs [5]. This allowed ras-

terization algorithms to become far superior to other

rendering alternatives, such as ray tracing, due to the

fast rendering times of the images and the low com-

putational costs. Rasterization algorithms are the

standard algorithm of choice when it comes to cre-

ating computer graphics quickly, efficiently, and of a

decent quality.

2.3 Ray Tracing Algorithm

Ray tracing algorithms were considered slow, but cre-

ated high quality images. The algorithms were gen-

erally used to create static images and visual effects

for films. The core concept of ray tracing is to project

rays of light from the viewer towards the object. Each

pixel on the screen will account for a single ray, and

this is done to guarantee that only rays which hit the

screen are traced. The rays are sent out until they

collide with an object, and then new rays are sent

from that point of collision if reflection or refraction

has occurred. This algorithm is done recursively each

time there is a collision with a reflective or transpar-

ent object. The rays will end when it collides with a

non-reflective and non-transparent object. ”Shadow

rays“ are also sent out upon an intersection with an

object towards the light source to determine which

objects are visible to the light source. The algorithm

will combine the colors returned from each recursive

call and that will be the final color displayed [6].

Ray tracing provides higher quality images than ras-

5

terization, but requires a higher computational cost.

The sudden increase in popularity for ray tracing is

due to the increase in computational power of mod-

ern day graphics cards. One example would be that

ray tracing works well with parallel computing, since

each ray can be calculated independently. As graph-

ics cards continue to improve, ray tracing will become

the standard in computer graphics.

3 Current State of the Field

Rasterization algorithms has had a significant im-

pact on the world of computer graphics. Being a

fast and efficient algorithm for generating images, ras-

terization quickly became the standard algorithm of

use. In order to generate larger more complex im-

ages at a faster speed, the rasterization process has

been streamlined onto graphics cards. This has in-

grained the rasterization process into the hardware

that is used daily. Due to this fact, the rasterization

algorithm has been and will continue to be used in

the foreseeable future.

3.1 OpenGL Standard

The standard today consists of OpenGL and ras-

terization with z-buffer algorithms, discussed in sec-

tion 3.1.1, and various shading algorithms. OpenGL

supports all of the operating systems currently avail-

able and most languages are taking advantage of

OpenGL through bindings. OpenGL has continued

to be the standard since its release in 1992 through

continual updates. After the transfer of control of

the OpenGL API standard to the Khronos Group,

yearly releases after the first initial release became

a pattern. The next version to follow this pattern

will release in the summer of 2014. Most of the re-

leases involve adding extensions into the core API of

OpenGL, which helps tailor OpenGL to the needs

of the users. These releases have allowed OpenGL

to remain competitive while seeking input on which

extensions to include into the core API of the next

release.

3.1.1 Z-Buffer Algorithm

The Z-buffer algorithm determines which pixels in the

scene are visible to the viewer. The algorithm uses

a buffer or 2-d array to keep track of the foremost

pixel that is in front of the viewer. As the objects in

the scene are rasterized, the buffer is updated with a

new color value if the new object’s z value is greater

than the buffer’s current z value for the pixel coordi-

nates. Once all the objects are rasterized, the buffer

is traversed and the color values are output. With-

out the z-buffer algorithm, the objects could intersect

and cause a mess of the image. This was caused by

the objects being generated as the code states, which

could be out of order with how the scene should have

been.

4 Technical Analysis: Acceler-

ation Structures

Computer graphics rendering is dominated by ras-

terization techniques. More recently, ray tracing has

seen a resurgence in use due to the increase in hard-

6

ware computing speed. One of the keys to the render-

ing techniques is the visibility algorithm. Ingo Wald

explains that “to produce an image it is necessary

to determine which surfaces are visible from the eye

point, which surfaces are visible from the light(s) and

hence not in shadow, and, if global illumination ef-

fects are being computed, which surfaces are visible

from points on other surfaces” [8]. The use of ray

tracing will produce the best image from a lighting

standpoint.

4.1 Questions when using a Ray

Tracer

Creating an image can be a lengthy and challenging

task. Highly complex images that include a million

triangles have become commonplace in the graphics

world. If the scene is animated, the task becomes

more difficult. Wald noted a few of these challenges

in his state of the art paper on ray tracing animated

scenes. The questions are important to the final re-

sult of the project and include:

1. “What kind of acceleration structure should be

used?”

2. “How is the acceleration structure built or up-

dated each frame?”

3. “What is the interface between the application

and the ray-tracing engine?” [8]

These questions will be answered in the following sec-

tions.

4.2 Current Strategies

An acceleration structure is used to speed up the pro-

cess of finding the object a ray has intersected. The

purpose of the structure is to sort the objects in the

scene. This can be accomplished by many structures,

but they fall under two different categories:

• Spatial subdivision techniques

• Object hierarchies

Spatial subdivision techniques divide the scene into

areas of equal object count. Object hierarchies di-

vide the scene by primatives, meaning each object is

partitioned an area from the scene. Wald describes

these structures as such; “spatial subdivision tech-

niques uniquely represent each point in space, but

each primitive can be referenced from multiple cells;

object hierarchy techniques reference each primitive

exactly once, but each 3D point can be overlapped

by anywhere from zero to several leaf nodes” [8].

There are advantages and disadvantages for each

technique that revolve around traversing and updat-

ing the structure. Spatial subdivision structures are

easy to traverse, but have the potential to revisit ob-

jects and waste time. Object hierarchies have the

potential to overwrite intersections of an area due to

sub-trees containing the same spatial location, and

this will waste time as well. Updating an object hi-

erarchy is easy, since the bounds around each prim-

itive are contained completely within a single node,

but the opposite is true for updating a spatial subdi-

vision structure [8]. Each implementation of the two

techniques fits a specific goal the designers possessed,

7

and an examination of the different structures will

show the necessary time to use the structure. The

following sections will examine one spatial subdivi-

sion techniques, KD-Trees, and one object hierarchy,

Bounding Volume Hierarchy.

4.3 KD-Trees

KD-trees are an implementation of the spatial sub-

division technique discussed in the previous section.

They are considered the best known acceleration

structure for use with ray tracing. KD-trees will

speed up the process of ray tracing by organizing

the objects within the scene by the location of their

points.

4.3.1 Description and Analysis

In order to use a KD-tree structure, memory must

be allocated to construct the tree and the root node.

In order to create an efficient KD-tree, we must know

what the surface area heuristic (SAH) is to determine

where to create a split in the scene. The formula to

determine the SAH is shown in Section 4.3.2. Kun

Zhou then describes the process as follows:

1. Calculate the SAH cost to perform a split at each

splitting position in the scene;

2. Pick the split position with the lowest SAH cost

and perform the split;

3. Distribute the triangles to each of the split sides

such that each side is balanced. [10]

This process is continued for each new node until a

certain threshold is met. Figure 1 shows an exam-

ple of the completed scene partitions as well as the

constructed KD-tree.

Now that the KD-tree is constructed, the structure

can be put to use within the ray tracing algorithm.

The below algorithms taken from [2] shows the pseu-

docode for a KD-tree traversal method. The method

determines which objects a ray will hit as it travels

through the scene. The ray begins at the root node

and travels down the tree using a stack to keep track

of unvisited nodes. The ray will continue to traverse

the tree until it reaches a leaf node. Afterwards the

ray will terminate and the process will begin again

with a new ray.

kd-search(tree, ray)

(global-tmin, global-tmax) = intersect (

tree.bounds, ray)

search-node(tree.root, ray, global-tmin,

global-tmax)

search-node(nod, ray, tmin, tmax)

if(node.is-leaf)

search-leaf(node, ray, tmin, tmax)

else

search-split(node, ray, tmin, tmax)

search-split(split, ray, tmin, tmax)

a = split.axis

thit = (split.value - ray.origin[a]) /

ray.direction[a]

(first, second) = order(ray.direction[a],

split.left, split.right)

if(thit >= tmax or thit < 0)

search-node(first, ray, tmin, tmax)

8

Figure 1: “Left: A two-dimensional kd-tree. Internal nodes are labeled next to their split planes and leaf
nodes are labeled inside their volume. Right: A graph representation of the same kd-tree” taken from [2].

else if(thit <= tmin)

search-node(second, ray, tmin, tmax)

else

stack.push(second, thit, tmax)

search-node(first, ray, tmin, thit)

search-leaf(leaf, ray, tmin, tmax)

// search for a hit in this leaf

if(found-hit and hit.t < tmax)

succeed(hit)

else

continue-search(leaf, ray, tmin, tmax)

continue-search(leaf, ray, tmin, tmax)

if(stack.is-empty)

fail()

else

(n, tmin, tmax) = stack.pop()

search-node(n, ray, tmin, tmax)

4.3.2 Surface Area Heuristic

CV (p) = KT + KI

(
SA(VL)

SA(V)
TL +

SA(VR)

SA(V)
TR

)
CNS = KIT

The SAH is used to determine an efficient location

to split up a scene for use with kd-trees. In the above

formulas, taken from [4], CV (p) is the split cost at the

node p and CNS is the cost of not splitting at node p.

If CV (p) is less than CNS , the node is split into two

more nodes, otherwise the node is a leaf node and

not split. KT is the cost of traversing the node, KI is

the cost of the triangle intersection, SA(VL), SA(VR),

SA(V) are the surface area of the left, right, and cur-

rent node, and TL, TR, T are the number of triangles

in the left, right, and current node. This formula is

used for each splitting location to determine the best

location for the next split.

4.3.3 Issues and Open Research

KD-trees are fast when it comes to traversing the

structure, especially with static scenes. The issue for

KD-trees is the costly updates required when using

a KD-tree to construct a dynamic scene. The KD-

tree will have to be made from scratch for each new

frame. This is due to the way the objects are sorted.

Adjusting a partition line that separates the objects

may result in unseen changes to other objects. There

9

are three ideas that may solve the problem with KD-

trees. One idea is to build the KD-tree fast enough

through parallelization and other methods such that

the structure can keep pace with the scene. Another

idea is to transform the rays instead of the geometry.

Finally, the KD-tree can be lazily rebuilt such that

only the sub-trees that are traversed by rays are re-

built [8]. There are many more ideas to be explored

with KD-trees to further improve the speed and effi-

ciency of the structure.

4.4 Bounding Volume Hierarchy

Bounding volume hierarchies (BVH) were less used

when KD-trees became the standard. Being an ob-

ject hierarchy structure and having slower render

times than KD-trees, BVHs fell out of favor. With

the renewed interest in using ray tracing for dy-

namic scenes, the advantages of BVHs became evi-

dent. BVHs are particularly adept at constructing

dynamic and deformable scenes.

4.4.1 Description and Analysis

BVHs are “trees that store a closed bounding volume

at each node. In addition, each internal node has ref-

erences to child nodes, and each leaf node also stores

a list of geometric primitives” [9]. The bounding vol-

ume shape is typically a box that is aligned on the

axes, otherwise known as an axis-aligned bounding

box (AABB). Figure 2 shows an example of a BVH

for four triangles that splits the triangles into two

pairs.

function partitionSweep(Set s)

bestCost = T_{tri}*|S| {cost of making a leaf}

bestAxis = -1, bestEvent = -1

for axis = 1 to 3 do

sort S using centroid of boxes in current axis

{sweep from left}

set S1 = Empty, S2 = S

for i = 1 to |S| do

S[i].leftArea = Area(S1) {with Area(Empty) =

\infty}

move triangle i from S2 to S1

end for

{sweep from right}

S1 = S, S2 = Empty

for i = |S| to 1 do

S[i].rightArea = Area(S2)

{evalutate SAH cost}

thisCost = SAH(|S1|, S[i].leftArea, |S2|,

s[i].rightArea)

move Triangle i from S1 to S2

if thisCost < bestCost then

bestCost = thisCost

bestEvent = i

bestAxis = axis

end if

end for

end for

if bestAxis = -1 then {found no partition

better than leaf}

return make leaf

else

sort S in axis ‘bestAxis’

S1 = S[0..bestEvent); S2 = S[bestEvent..|S|)

return make inner node with axis

‘bestAxis’

end if

10

Figure 2: Examples of a BVH taken from [9]

end

The algorithm above, taken from [8] is used today

to create the most efficient BVH structure. The al-

gorithm uses the SAH function from section 4.3.2 to

determine what split location will be the most cost

efficient for the BVH structure. The algorithm as-

sumes the scene is comprised of triangles, but can be

altered to work with any primitive. The end result

of the algorithm is a BVH tree structure with a bal-

anced amount of primitives throughout the branches

of the tree.

With construction of the BVH structure complete,

traversal is the next step. Traversal in a BVH tree

is straightforward. When a ray hits one of the nodes

in the BVH tree, the children nodes are tested for

overlapping bounds. If the child node overlaps with

the parent node, the ray traversal continues with the

child node. This is done recursively until the last

node a ray traverses is a leaf node [9].

4.4.2 Issues and Open Research

There are a few issues to be aware of when working

with BVHs. The nodes have the potential to overlap

the same are, and this can lead to some issues with

ray intersection. The other issue to consider is the en-

closure of the primitives by the BVH. BVHs will not

be as tightly bound around a primitive as a KD-tree

would. This can lead to more primitive intersections

that need to be accounted for. Research is continuing

to improve the efficiency and speed of BVHs. Wald

believes a “set of animation benchmarks” would allow

better comparisons between the different approaches

of BVHs [9]. The benchmark would be a better guide

to determine what techniques work and which ones

need more fine-tuning.

5 Future Trends

Ray tracing has become an important technique for

displaying computer graphics. It was not always as

useful as it is today. There have been many techno-

logical discoveries and improvements that have made

ray tracing a reality. Ray tracing has become viable

as CPUs and GPUs have become more powerful. This

increase in computational power has overcome the

main problem with ray tracing: high computational

costs. The technological advances will continue to

11

improve computing power, thus changing the field of

computer graphics. This change will involve render-

ing of dynamic scenes, and the acceleration structures

that accompany ray tracing algorithms. The acceler-

ation structures are a topic of much research today.

There are a few common structures that have seen

changes to improve build speed, traversal speed, and

intersection detection. These improvements have in-

creased the viability of using ray tracing to render

dynamic scenes. Lastly, ray tracing programs are

lacking when compared to the rasterization program,

OpenGL. As ray tracing becomes widely used, a reli-

able ray tracing program or application programming

interface will need to be developed to strengthen core

values of ray tracing.

5.1 Rasterization and CPU/GPU Im-

provements

Computer graphics is a young field when compared

to other areas of research. This field has been domi-

nated by the rasterization algorithm used to display

graphics on a screen. Rasterization has many ad-

vantages that make it the ideal choice for computer

graphics. The algorithm is fast and efficient, while

still maintaining quality graphical output. This has

kept rasterization as the main algorithm in use today.

Ray tracing has been around for a long time as well,

but had some flaws that deemed the algorithm inef-

ficient. Ray tracing required a lot of computational

power to create the high quality images it output. It

was unable to be used for dynamic scenes, and it was

used mainly for off-line rendering.

CPUs and GPUs of today have become vastly more

powerful than their older counterparts. With this in-

crease in computing power, ray tracing has become

a more viable option to be used in everyday com-

puter graphics. This change has occurred over the

last decade for GPUs specifically, but improvements

to CPUs have occurred continuously over time. For-

rest noted these changes over a decade ago when he

stated graphics cards will have “support for rendering

techniques such as ray tracing, shadows, path trac-

ing, and photon mapping” [3]. GPUs will become

the main source of the computational power needed

to run a ray tracing algorithm. Specialized GPUs

have been made to work efficiently with rasterization

by converting the rasterization pipeline into simple

instructions preloaded onto the graphics card. This

idea has been implemented today, but will see more

widespread usage in the coming years as specialized

GPUs are made to work with the ray tracing algo-

rithm.

5.2 Acceleration Structure Trends

There are a few main acceleration structure tech-

niques in use as of today. The main techniques are

kd-trees and Bounding Volume Hierarchies. A third

technique is the Grid-based technique that is simi-

lar to a kd-tree, except the algorithm uses consistent

split lines to separate the objects in the scene. The

Grid-based technique is not used as heavily as the

other techniques, and this will continue to be normal.

Kd-trees and BVHs are stronger acceleration struc-

tures than a Grid-based technique. A combination of

12

kd-trees and BVHs are going to be common in the

coming years. This combination would separate the

objects in larger groups using BVHs and then sepa-

rate the objects even further with the kd-tree. The

kd-tree would be contained within the BVH, to put it

simply. This would allow the acceleration structure

to be updated easily with the outer BVH, since the

strength of the BVH is in the easily update-able na-

ture of the structure. The inner kd-tree would allow

the structure to be easily navigated, as is the strength

of the kd-tree. The combination of the two structures

is the logical next step in the process of finding the

fastest, most efficient acceleration structure.

An skd-tree is an example of this future trend. Dis-

cussed briefly in Wald’s State of the Art report on ray

tracing animated scenes, an skd-tree is a structure

similar to a kd-tree, but “behaves like a bounding

volume hierarchy” [8]. The structure can be updated

relatively easily, but the traversal can be slower in

some cases. Some experiments have shown similar

performance speed to a BVH, but it has not been

fully investigated yet [8]. Acceleration structures that

combine the known structures, or aspects of different

structures, will continue to improve the performance

of ray tracing algorithms. This will lend itself to the

improvement of ray tracing dynamic scenes as well.

5.3 Ray Tracing Programs

Rasterization has seen such widespread usage due

to the OpenGL application programming interface.

OpenGL simplified the way computer graphics were

made and has continued to be the top API used for

rasterization. OpenGL does not support ray tracing,

but another API was created similar to OpenGL for

the purpose of supporting ray tracing exclusively, ti-

tled OpenRT. OpenRT was modeled after OpenGL,

since OpenGL was very successful in the way it

accomplished using rasterization. OpenRT allowed

users to create graphics applications that utilized the

power of ray tracing. OpenRT was not open source,

therefore it was not widely in use. A new ray trac-

ing API would be useful for the further development

of ray tracing techniques, and also to introduce new

users to ray tracing in a user-friendly manner. With

OpenGL being relevant for rasterization, it would be

unsurprising if a ray tracing API would be released

within the next five years.

6 Demonstration

In order to demonstrate some of the differences be-

tween rasterization and ray tracing, I generated some

images using both algorithms with the program,

Blender. These images will clarify what is possible

with each rendering algorithm. I will also compare

the build speed and file size of the images, in order to

show the differences in computational power needed

to run each algorithm. Finally, I will discuss some of

the issues I had while working on the demonstration.

6.1 Image Comparisons

In Figure 3, a sphere was created and rendered with

rasterization. The image appears flat and the shad-

ows do not look the greatest. Compared to Figure 4,

this image was rendered using ray tracing and has

13

Figure 3: A sphere in front of three different colored
planes rendered using rasterization.

Figure 4: A sphere in front of three different colored
planes rendered using ray tracing.

Figure 5: A sphere in front of three different colored
planes rendered using rasterization with ambient oc-
clusion.

Figure 6: A sphere in front of three different colored
planes rendered using rasterization with approximate
ambient occlusion.

Figure 7: A glossy sphere in front of three different
colored planes rendered using ray tracing.

Figure 8: A glass sphere in front of three different
colored planes rendered using ray tracing.

14

Figure 9: Three shapes in front of three different
colored planes rendered with rasterization.

more depth and better shadows. There are some tech-

niques used to improve rasterization, and one such

technique is ambient occlusion. Figure 5 uses am-

bient occlusion and Figure 6 uses ambient occlusion

approximation. Ambient occlusion takes into consid-

eration ambient light in the environment. This tech-

nique brightens the shadowed areas in the image, but

it does not generate shadows that are shown in Fig-

ure 4. Figure 7 demonstrates the reflective rays and

Figure 8 demonstrates the refractive rays that are

possible with ray tracing. I was unable to generate

the same kind of image with rasterization. A texture

could be used to make the image similar, but the

shadows would be missing, as well as the green, blue,

and red colors on the sphere caused by refracting and

reflecting rays. I believe the image in Figure 4 is the

highest quality image, due to the shadows behind the

sphere and the slight coloration of the sphere from the

light reflected off of the walls.

6.2 Build Speed And File Size

The next few images were generated and the time

it took to generate was recorded. The images were

Figure 10: Three shapes in front of three different
colored planes rendered with ray tracing.

Figure 11: Four shapes in front of three different
colored planes rendered with rasterization.

Figure 12: Four shapes in front of three different
colored planes rendered with ray tracing.

Figure 13: A ceramic cup.

15

saved as a .png file. Figure 9 was generated in 0.39

seconds and the file size is 185 KB. Figure 10 was gen-

erated in 1:06 minutes and the file size is 639 KB. The

rasterization algorithm was 169 times faster than the

ray tracing algorithm, and the file size was 3.5 times

smaller. With the addition of one more object as

shown in Figure 11 and Figure 12, the rasterization

render speed increased to 0.74 seconds with a file size

of 227 KB and the ray tracing render speed increased

to 1:09 minutes with a file size of 685 KB. This trans-

lates into about a 90% increase in build time for the

rasterization algorithm and about a 5% increase in

build time for the ray tracing algorithm. There was

about a 23% increase in file size for the rasterization

algorithm and about a 7% increase in file size for the

ray tracing algorithm. Figure 13 took 1:43 minutes to

render using ray tracing and had a file size of 555 KB.

The file size was smaller than the other ray traced im-

ages, but the build time was longer. This would be

caused by a more complex image with less color vari-

ance throughout. From what was shown by the image

statistics, it can be concluded that ray traced images

take longer to render and have a larger file size. This

follows the ideas presented above stating ray tracing

takes a longer time to execute, but produces a higher

quality image.

6.3 Issues With Demonstration

Throughout the time dedicated to learning the

Blender program and the intricacies involved in cre-

ating the different images, I was unable to create a

dynamic or animated scene. The amount of work

necessary for a decent quality scene with the abil-

ity to move through the scene or an animated walk-

through of the scene was higher than I anticipated.

With the addition of moving objects, the difficulty

increased. Therefore, I was unable to complete the

dynamic scene portion of the demonstration I was

hoping to show.

7 Conclusion

Computer graphics have advanced rapidly through

the course of fifty years. What started out as simple

dots and lines on raster screens, quickly became the

highly advanced and beautiful looking graphics we

know today. Rasterization algorithms are and will

continue to be the standard rendering algorithm in

use, but with continual improvements to ray tracing

algorithms, the standard will change. Rasterization is

ingrained into every part of the rendering pipeline. If

ray tracing is to replace rasterization, this same idea

will need to be used with ray tracing. A rendering

API similar to OpenGL that uses only ray tracing will

need to be developed as well. Dynamic scene render-

ing using ray tracing is already a reality, and with the

continual research of acceleration structures, will be

faster and more efficient in the following years. The

demonstration I presented also shows the advantages

and disadvantages of using ray tracing. The images

will take longer to render, but the high quality im-

ages are worth the extra time needed to render. Ray

tracing will become the standard rendering algorithm

in use, if a ray tracing API is developed, acceleration

structures continue to improve, and specific hardware

16

caters to the ray tracing process.

A Previous Work

Throughout my college career I was able to learn how

to program using Java. This basic knowledge of the

language continued to expand and I was able to learn

the basics of other languages. This allowed me to

learn quickly how to use new programs at a basic

level. With continual study and practice, I am able

to develop a knowledge of a language or program that

I am able to work with. There are still many things

I do not know and that I would need to know, but I

am able to function with the knowledge I have. This

translates into the working knowledge I developed in

order to use the program Blender. I switched over

to Blender later into the project than I should have,

but it was a better program to use instead of the first

program I planned on using, POV Ray-Tracer. Due

to switching late to the Blender program, I wasn’t

able to learn more complicated concepts needed to

work with the program.

I took the computer graphics course at St. John’s

University while I worked on this paper. I was able

to learn about rasterization and apply that knowl-

edge in programs I made for the class. This allowed

me to develop a better understanding of rasteriza-

tion that I could then use to compare to ray tracing.

It also helped me learn about the inner workings of

rasterization and the graphics pipeline. The pipeline

is a necessary topic to understand, in order to real-

ize why rasterization is so dominant in the computer

graphics world. The computer graphics course was

also interesting and an overall great experience that

complimented my research topic for the semester.

During my college career, I was able to take a few

course that focused on a semester long project. These

courses taught me how to make continual progress. I

learned how to break up larger parts into more man-

ageable smaller tasks. This became helpful when try-

ing to conquer multiple papers, presentations, and

projects. The skills learned from the semester long

projects were one of the most beneficial to learn for

future job prospects as well as this research project.

The ability to break apart larger projects into smaller

tasks will be invaluable for future endeavors.

References

[1] Arthur Appel. Some techniques for shading ma-

chine renderings of solids, 1968.

[2] Tim Foley and Jeremy Sugerman. Kd-tree ac-

celeration structures for a gpu raytracer, 2005.

[3] A. R. Forrest. Future trends in computer graph-

ics: How much is enough? Journal of Com-

puter Science and Technology, 18(5):531–537,

2003. ISI Document Delivery No.: 725NA Times

Cited: 0 Cited Reference Count: 8 Forrest, AR

0 Science china press Beijing.

[4] Keith Lantz. Kd tree construction using the

surface area heuristic, stack-based traversal, and

the hyperplane separation theorem, 2013.

[5] Steven G. Parker, Heiko Friedrich, David

Luebke, Keith Morley, James Bigler, Jared

17

Hoberock, David McAllister, Austin Robison,

Andreas Dietrich, Greg Humphreys, Morgan

McGuire, and Martin Stich. Gpu ray tracing.

Commun. ACM, 56(5):93–101, 2013.

[6] Paul Rademacher. Ray tracing: Graphics for the

masses.

[7] William Shoaff. A short history of computer

graphics, 2000.

[8] I. Wald, W. R. Mark, J. Gunther, S. Bou-

los, T. Ize, W. Hunt, S. G. Parker, and

P. Shirley. State of the art in ray tracing

animated scenes. Computer Graphics Forum,

28(6):1691–1722, 2009. ISI Document Delivery

No.: 495OE Times Cited: 11 Cited Reference

Count: 112 Wald, Ingo Mark, William R. Guen-

ther, Johannes Boulos, Solomon Ize, Thiago

Hunt, Warren Parker, Steven G. Shirley, Peter

National Science Foundation [0541009, 0306151,

0546236]; U.S. Department of Energy [W-7405-

ENG-48LA¿-13111-PR¿]; Intel Corporation The

writing of this survey has been supported by the

National Science Foundation (awards 0541009,

0306151 and CAREER award 0546236), by the

U.S. Department of Energy through the Cen-

ter for the Simulation of Accidental Fires and

Explosions (grant W-7405-ENG-48LA ¿-13111-

PR ¿), and by research grants from Intel Cor-

poration. The authors would particularly like to

thank Jim Hurley at Intel, who has strongly sup-

ported academic ray tracing research over the

past several years. 12 Wiley-blackwell publish-

ing, inc Malden.

[9] Ingo Wald, Solomon Boulos, and Peter Shirley.

Ray tracing deformable scenes using dynamic

bounding volume hierarchies. ACM Trans.

Graph., 26(1):6, 2007.

[10] Kun Zhou, Qiming Hou, Rui Wang, and Baining

Guo. Real-time kd-tree construction on graphics

hardware, 2008.

18

