
Web Applications With Java Server Pages and
Microsoft .NET Web Forms

Ryan Tillotson

Abstract

As the web continues to develop, web applications will become more prominent. Because of this, it is important to
determine the similarities and differences between the most common web application frameworks. To this effect, the
syntactic and architectural differences between Java Server Pages (JSP’s) and ASP.NET Web Forms were analyzed.
It was determined that although the two technologies bear many similarities, their current implementations offer
different strengths and weaknesses. Which technology is best depends on the specific circumstances surrounding the
project. These findings can help companies determine which technology would work best with existing infrastructure
or assist developers in switching from one technology to the other.

CONTENTS

I Introduction 2

II Survey 2
II-A Static vs Dynamic Webpages . 2
II-B Incorporating Classic ASP into the .NET Framework . 3

III Technical Analysis 3
III-A ASP.NET Web Forms . 3

III-A1 Introduction to Web Forms . 3
III-A2 Application Creation . 3

III-B JSP’s and Servlets . 4
III-B1 Introduction to JSP’s and Servlets . 4
III-B2 Application Creation . 4

III-C A Syntactical Comparison of ASP.NET, JSP, and Servlets 5

IV Application Server Design 5
IV-A Internet Information Server . 5

IV-A1 Introduction to IIS . 5
IV-A2 IIS Processing Architecture . 5

IV-B JSP Application Servers . 7
IV-B1 Introduction to JSP Application Servers . 7
IV-B2 JSP Processing Architecture . 7

V Speak Salty Blog – The Prototype 9
V-A Introduction to Speak Salty . 9
V-B Database . 9

V-B1 Database Tables . 9
V-B2 Database Stored Procedures . 9

V-C Creating a New Entry . 10
V-D Generating the Default.aspx Page . 10

VI Future Trends 10
VI-A The Future of ASP.NET . 10
VI-B The Future of JSP’s . 12

1

VII Conclusion 14

References 15

Appendix 15
A Reflection of Learning . 15

A1 The Impact of Previous Experiences . 15
A2 Impact on My Future . 15

B Full Code Listing . 16
B1 NewEntry.aspx . 16
B2 NewEntry.aspx.vb . 17
B3 Default.aspx . 17
B4 Default.aspx.vb . 18
B5 BlogEntry.vb . 18

LIST OF FIGURES

1 Basic HTML that will result in a webpage that says “John is 50 years old” 2
3 Classic ASP Program [1] . 2
2 JavaScript embedded in HTML [2] . 3
4 The “Standard” section of the Toolbox in Visual Studio Professional 2013 4
5 The “init” method can be handled in the ASPX page’s associated code file. This method can then be specified in

the properties of the calendar and will be called as it is initialized . 5
6 A selection of properties available for the Calendar element in Visual Studio Profession 2013. These can be edited

and modified by the user. The ASP.NET compiler will then render HTML, CSS, and Javascript to the browser
based on these settings. 5

7 This JSP page will generate the HTML that prints out the current date and time on the system, the version of
java running, the name of the operating system and the name of the current user. 6

8 This is the HTML generated by the request sent to the server by the JSP page. It displays the current date and
time on the system, java version, name of the operating system, and the name of the current user. 6

9 This function is called when the ASPX page (Default.aspx) that this page is attached to is opened. At this time,
the application server writes the specified information to the page. 6

10 This HTML is generated when the .NET page is instantiated and the Page Load() function is called. 7
11 This servlet prints the same information as the JSP in Figure 7. However, it does so by directly writing the HTML

directly. The original JSP was translated to a servlet and then printed by the web server into static HTML. . . 8
12 A diagram depicting the path that a .NET application follows when an HTTP request is initiated [3]. 8
13 A diagram depicting a standard JSP response path [4]. 9
14 This stored procedure – dbo.insert blog entry inserts the title, body, and current date into a new SS POSTS entry.

It is called by the new entry page in the application. 10
15 This stored procedure – dbo.insert blog entry image inserts the image path and post id for an image into the

SS IMAGES table. There can be many image entries for a single post. 10
16 This figure shows the entry screen as seen by the blog administrator. This allows the user to enter a title, body,

and select images to be uploaded to the server. 11
17 This function will insert a new blog entry and all images in the imagelist into the database. It does this by storing

the new POST ID returned from the first stored procedure and using it to relate the images to the blog entry. . . 11
18 This is an example blog entry. The text, date, and placeholder text are shown along with the only image associated

with this post. 12
19 This function will pull all entries from the SS POSTS table, put them into BlogEntry objects, and subsequently

display them in HTML for the user. 13
20 Presence of key technology terms on Indeed - a job search engine. [5] . 14

2

<!DOCTYPE html>
<html>

<body>
John is 50 years old

</body>
</html>

Fig. 1: Basic HTML that will result in a webpage that
says “John is 50 years old”

I. INTRODUCTION

The growth of computing over the last fifty years has
brought many changes into how companies conduct their
business. Originally, either the development of entire
desktop applications or the purchase of existing software
was needed to perform business tasks. This put many
businesses in a difficult position, because creating an
entire desktop-based application system is expensive.
Further, there is a significant chance that pre-created
systems will not be well-suited for a company’s needs. A
more cost-effective method of development was needed.
One of the most time-consuming parts of development
was the creation of a user interface However, by modi-
fying existing web technologies, it becomes much easier
to build applications. Although static web content was
not suitable for business purposes, web content that was
dynamic would work well. It was this that sparked the
growth of web application frameworks such as ASP.NET,
Ruby on Rails, Java Server Pages, the Oracle Application
Development Framework, Spring, and many more. Now,
ten years after this movement began, application devel-
opment frameworks have managed to significantly re-
duce the cost and increase the effectiveness of enterprise-
level applications.

II. SURVEY

A. Static vs Dynamic Webpages

Hypertext Markup Language (HTML) has been used
to create webpages since the creation of the internet.
However, because it is static, a new page must be created
and rendered for new content to be delivered. Thus,
HTML alone is not suitable for use in business processes.
The HTML code in Figure 1 shows basic syntax and
prints out “John is 50 years old”. Although this language
has become a fundamental part of webpage creation, it
relies heavily on other languages to provide content.

Out of the need for dynamic pages, client-side lan-
guages such as JavaScript were born. Client-side lan-
guages allow the modification of the display through
client-side events and user inputs. These languages act

<%@ Language=VBScript %>
<html>
<head>
<title>Example</title>

</head>
<body>
<%
FirstVar = "Hello world!"

%>
The time is: <%=time%>

</body>
</html>

Fig. 3: Classic ASP Program [1]

entirely on the client’s side of the browser and have
no server interaction. The example in Figure 2 shows
JavaScript that has been embedded in HTML. This code
will again print out ”John is 50 years old”, but it is
now printed through JavaScript that modifies the HTML
of the page based on variables. This takes place after
the page has been loaded. Now, if text boxes and a
submit button were added to this page, the data could
be bound between those text boxes and the firstname,
lastname, age, and eyecolor attributes of the person
class. JavaScript functions like this can modify how
page elements are displayed, rewrite HTML, respond to
user input, and overall create a dynamic web experience.
While client-side languages were a major improvement
over static pages, websites still needed the capability to
interact with a database.

The need for database interaction was a driving force
behind the creation of technologies like Active Server
Pages, now known as Classic ASP. This platform for
creating dynamic webpages was first released in 1996
by Microsoft Corporation [6]. These pages employ the
languages of VBScript and JScript (Microsoft’s version
of JavaScript) for server-side and client-side functions,
respectively. Code in VBScript and JScript is implanted
into HTML markup and is then executed. In Figure 3,
an example of classic ASP is shown. The VBScript on
this page performs the time function on the server and
displays the result on the page. Server-side functions
can be custom-defined and the page can be updated
to display requested data for a user. In contrast to
static webpages and those that only employ client-side
languages, ASP pages can also be built to store and
retrieve information from databases. This is a major
advantage over standard HTML and JavaScript-based
pages and led Microsoft to the integration of ASP into
their .NET Framework.

3

<!DOCTYPE html>
<html>

<body>
<script>

person={firstname:"John",lastname:"Doe",
age:50,eyecolor:"blue"}

document.write(person.firstname + " is "
+ person.age + " years old");

</script>
</body>

</html>

Fig. 2: JavaScript embedded in HTML [2]

B. Incorporating Classic ASP into the .NET Framework

The .NET Framework relies on the Common
Language Runtime (CLR) for its increased performance
and reliability. The CLR is a common-compilation
language created by Microsoft. This means that
multiple programming languages can be used to provide
information to a program or application. In the world
of .NET, compiling a program in C#, VB.NET, C++,
F#, or any other .NET language results in a CLR-
based program. This program is then processed using
advanced compilation methods that result in increased
execution speed and decreased resource usage [7]. One
of the primary complaints about ASP was its commonly
slow performance. Unless the programmer of the ASP
page specifically optimized his or her page, it would
suffer from inefficiencies. Out of this was born one of
the modern web application development frameworks:
ASP.NET.

This framework, which was introduced in 2004, is
described by Microsoft as “a unified web development
model that includes the services necessary for you to
build enterprise-class web applications with a minimum
of coding” [8]. ASP.NET has all of the features of
Classic ASP, but few of the weaknesses for which
Classic ASP became famous. This, coupled with the
.NET classes now available to the ASP.NET pages,
results in a development framework that is efficient and
well-integrated with current Microsoft Software. This
application framework has been continuously updated
since its creation and the current version is .NET 4.5.1
[8].

III. TECHNICAL ANALYSIS

A. ASP.NET Web Forms

1) Introduction to Web Forms: Although both of
these platforms are robust and far-reaching, they each
still revolve around a core set of technology. For
Microsoft’s .NET platform, this technology is their
ASP.NET Web Forms. These pages are commonly seen
on web sites with Active Server Pages – those that have
the “.aspx” extension [8]. The benefit of these Web
Forms is that they use common tags with numerous
properties and settings that can be tweaked to meet the
needs of the developer. These forms are then rendered to
the page in HTML, CSS, and Javascript. This rendering
process leaves much of the “heavy lifting” with the
server and allows the developer to focus more closely
on the functionality of the program.

According to Microsoft [9], the strengths of ASP.NET
Web Forms are that:

• The current browser can be detected and the proper
markup can be sent out to the user.

• Data can be bound to objects on the server-side
resulting in faster development times.

• Multiple server-side languages are supported.
• Programs can be precompiled resulting in faster

execution time.
2) Application Creation: In addition to adding signif-

icant features to Web Forms over the past eight years,
Microsoft has also developed programs to make it easier
for Web Forms to be learned. For example, Microsoft’s
Integrated Development Environment, Visual Studio, is
a powerful tool that comes in several tiers: Express,
Professional, and Ultimate. The Express Edition is free
for all while Visual Studio Professional and Ultimate

4

Fig. 4: The “Standard” section of the Toolbox in Visual Studio
Professional 2013

both generally require a licensing fee [6]. However,
Visual Studio Professional is available to most students
via Microsoft’s Dreamspark program [10]. This is a
great way for new developers to get hands-on experience
with Microsoft products free of charge. Each version
of Visual Studio allows the creation of ASP.NET Web
Forms both through source code and a visual representa-
tion. The option of creating an application page visually,
in conjunction with the free copies of Visual Studio
that are available, allows new developers to easily begin
creating applications.

Figure 4 shows a portion of the Visual Studio tool-
box. By selecting the “Calendar” and dragging it into
an ASP.NET Web Forms page’s “Design” section, the
Calendar element is placed into the corresponding area
of the ASPX source code. From here, different settings
can be modified on the element and events handlers can
be implemented to perform different tasks. For example,
if a developer needs to initialize this calendar with
conditional settings or data from another source, they
can handle the “Init” method shown below in Figure 5.
Further, a developer can also change properties by using
right-clicking on the object in design mode and selecting
“Properties” from the menu. A portion of this menu can
be seen below in Figure 6.

This visual method of program creation, coupled with
the tutorials available on Microsoft’s website, increases
the speed with which new developers can create useful
applications. Although the complete version of ASP.NET
Web Forms does cost money, it will also save money in
the long run with lower development times and lowered
barriers to entry for new developers. As Microsoft pro-
gresses with this technology, it will continue to offer
strong security and increased development efficiency for
companies around the world [11].

B. JSP’s and Servlets

1) Introduction to JSP’s and Servlets: According to
Oracle Corporation, JSP’s enable programmers to de-
velop “information rich, dynamic Web pages that lever-
age existing business systems” Further, “JSP technology
enables rapid development of Web-based applications
that are platform independent” [12]. Although it is
difficult to directly compare ASP.NET Web Forms with
JSP’s and Servlets, they still bear many similarities [12]
in their implementation:

• Applications are still created using a combination
of dynamic and static HTML that is combined to
make the final HTML passed to a user’s browser.

• Javascript (and its libraries) can still be used to
modify and make sites more interactive on the
client-side.

• Servlets and JSP’s can perform both server-side
methods and actions.

2) Application Creation: Unlike ASP.NET,
programming JSP’s has a steep learning curve and
there are not as many visual tools like those in Visual
Studio. Because of this, a developer must learn the
technology primarily through the use of external
resources and examples. Another reason JSP’s and
Servlets maintain such a high learning curve is because
of the amount of manual implementation required
during development. In ASP.NET, much of the behind-
the-scenes programming is handled automatically. This
yields an upfront bonus in development efficiency, but
may result in less efficient applications. Overall, JSP’s
are more difficult to learn, but they leave more areas
open for program customization. The net result is that
JSP’s and Servlets are more customizable and can be
optimized for individual applications, but require more
time to setup [13].

Now, As an example of simple JSP syntax, Figure 7
shows a Java expression embedded in JSP tags. The
HTML that is generated by the server is shown in
Figure 8. This example is basic, but it illustrates the
ability of declaration operators and Java expressions
within a page to print data. By offsetting Java code in
special tags, the expressions will be evaluated and the
results will be output by the application server in static
HTML. ASP.NET Web Forms and JSP with Servlets
both output static HTML for a browser to render, but
to properly compare these two technologies, a deeper
understanding of how each of them processes and
displays this information is required.

5

protected void cal_OnInit(object sender, EventArgs e){
//Make the calendar invisible if there are 31 days in this month
if (DateTime.DaysInMonth(DateTime.Now.Year, DateTime.Now.Month) == 31)

Calendar1.Visible = false;
}

Fig. 5: The “init” method can be handled in the ASPX page’s associated code file. This method can then be specified in the
properties of the calendar and will be called as it is initialized

Fig. 6: A selection of properties available for the Calendar element in Visual Studio Profession 2013. These can be edited
and modified by the user. The ASP.NET compiler will then render HTML, CSS, and Javascript to the browser based on these
settings.

C. A Syntactical Comparison of ASP.NET, JSP, and
Servlets

To demonstrate the difference between ASP.NET
Web Forms and A similar application is shown with
ASP.NET Web Forms in Figure 9. This program prints
out similar statistics about the current ASP.NET session
to the HTML. This is printed prior to the HTML output
because it is added to the page during the Page Load
Event. In comparison with the example in Figure 7,
the syntax is entirely different. Although both pages
have similar results, they are achieved through different
means. The ASP.NET code-behind page offers a distinct
split between server-side and client-side controls on
the Web Forms while the JSP example embeds the
server-side code within the static HTML. This is the
primary syntactic difference between JSP and ASP.NET
Web Forms.

The closer syntactic comparison to an ASP.NET
code-behind page is the Servlet. A Servlet comes
into existence either through direct creation in code
or when a JSP page requires processing. Essentially,
upon execution, a server translates a JSP page into
a HTTPServlet which then prints out the required
HTML using Java. A good rule of thumb is that a
Servlet is “HTML inside Java” and a JSP is “Java
inside HTML” [14]. Although JSP pages are powerful,

Servlets serve other functions that are necessary to
the proper execution of an application. In many ways
using JSP with Servlets is similar to ASP.NET Web
Forms, but when it comes to the execution and browser
response processing, they differ heavily.

IV. APPLICATION SERVER DESIGN

A. Internet Information Server

1) Introduction to IIS: Internet Information Server
(IIS) is a Windows service that is available in all modern
Windows installations as well as in Microsoft Windows
Server. This robust application is capable of hosting
web applications either locally or on the internet. It is
the only “official” .NET application server for use with
ASP.NET Web Forms and other portions of the .NET
Framework [15]. As a result, Microsoft fully supports IIS
and offers excellent integration between IIS and Visual
Studio.

2) IIS Processing Architecture: In terms of
architecture, the HTTP Request path followed by
IIS maintains some similarities with the JSP HTTP
Request path, but is ultimately different. The biggest
difference is that the request makes two passes through
the activation service – one to retrieve the configuration
and another to place the request in the IIS processing
pipeline. In the JSP application server, a request is

6

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html;">
<title>Test of JSP!</title>

</head>
<body>

It’s a JSP. <%= new java.util.Date() %>

Java Version: <%= System.getProperty("java.version") %>

Operating System: <%= System.getProperty("os.name") %>

User Name: <%= System.getProperty("user.name") %>

</body>
</html>

Fig. 7: This JSP page will generate the HTML that prints out the current date and time on the system, the version of java
running, the name of the operating system and the name of the current user.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html;">
<title>Test of JSP!</title>

</head>
<body>

It’s a JSP. Thu Apr 03 21:05:41 CDT 2014

Java Version: 1.7.0_51

Operating System: Windows 8

User Name: Ryan

</body>
</html>

Fig. 8: This is the HTML generated by the request sent to the server by the JSP page. It displays the current date and time on
the system, java version, name of the operating system, and the name of the current user.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page{
protected void Page_Load(object sender, EventArgs e){

Response.Write("Time: " + DateTime.Now + "
");
Response.Write("User: " + Page.User.Identity.Name.ToString() + "
");
Response.Write("OS: " + Request.UserAgent.ToString() + "
");

}
}

Fig. 9: This function is called when the ASPX page (Default.aspx) that this page is attached to is opened. At this time, the
application server writes the specified information to the page.

7

Time: 4/3/2014 11:09:41 PM

User:

OS: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:27.0) Gecko/20100101 Firefox/27.0

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Welcome to Speak Salty!</title>
</head>
<body>

<form method="post" action="Default.aspx" id="form1">
<div class="aspNetHidden">

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="WNOWQ0RZ5XzIsaaudVESgbgihFIhOnh+
7bSiKtIT3wFGYElIMqP+K0sCUta3E4y
xXAkaPqY4lQMW6I5Wn+/tqeG1vwNe3Jg1ydPIGpI+GhQ=" />

</div>
</form>

</body>
</html>

Fig. 10: This HTML is generated when the .NET page is instantiated and the Page Load() function is called.

made and the configuration information is passed along
with the request. This allows the JSP server to progress
to compilation without iterating back through any
activation services.

The IIS Request Processing breaks down into the
following steps [3]:

1) Client requests are intercepted.
2) Initial contact is made with Windows Activation

Service(WAS) which manages application life-
times.

3) WAS requests configuration information from the
respective XML file.

4) Configuration information is sent to the WWW
service which then publishes it.

5) Configured HTTP contacts WAS again.
6) WAS starts a worker process for this application.
7) Worker process goes through IIS 7.0 Processing

Pipeline where various code modules are used to
process the request.

8) Response is returned to the client via the HTTP
protocol stack.

The steps path a standard HTTP request takes when it
enters IIS are shown in Figure 12.

B. JSP Application Servers
1) Introduction to JSP Application Servers: Unlike

Microsoft’s .NET there are many different application

servers capable of handling JSP’s and Servlets. Several
of the most popular are Jetty, Apache Tomcat, Glassfish,
Oracle Weblogic, and IBM Websphere. In addition,
most of these application servers can run on much less
computing power than IIS. This is a major benefit to
companies that have older hardware. In addition, since
most of the software necessary to create JSP applications
with Servlets is free, companies can pool their capital to
hire superior developers.

2) JSP Processing Architecture: The following steps
occur when a JSP is accessed by a browser [4]:

1) Browser sends HTTP request to a web server.
2) Web server acknowledges that the request is for

a JSP page and sends it to the proper application
server.

3) JSP page is loaded from the server disk and it is
converted into a Servlet.

4) Application server compiles the Servlet into a class
and forwards this to the engine that executes these
classes.

5) Servlet class is executed and the result is an HTML
file. This is passed to the web server in an HTTP
response.

6) Web server forwards this response to the browser
in a static HTML page.

7) Browser handles this page like a standard HTML
page.

8

// doGet is called when a browser performs an HTTP "GET".
protected void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");

//Print out the information to the output writer.
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("Time: " + new java.util.Date() + "
");
out.println("Version: " + System.getProperty("java.version")+ "
");
out.println("OS: " + System.getProperty("os.name")+ "
");
out.println("User: " + System.getProperty("user.name")+ "
");
out.println("</html>");

}

Fig. 11: This servlet prints the same information as the JSP in Figure 7. However, it does so by directly writing the HTML
directly. The original JSP was translated to a servlet and then printed by the web server into static HTML.

Fig. 12: A diagram depicting the path that a .NET application follows when an HTTP request is initiated [3].

9

Fig. 13: A diagram depicting a standard JSP response path [4].

These steps allow for the handling of various events
and the addition of new Servlets into a JSP page’s output.
Further, it should be noted that these steps are invisible
to a user. A visualization of this process can be seen in
Figure 13.

V. SPEAK SALTY BLOG – THE PROTOTYPE

Please see Appendix B for the full code listing.

A. Introduction to Speak Salty

In order to demonstrate the effectiveness of modern
web application technologies, I created a blog that is con-
structed from the database level upward using Microsoft
SQL Server and ASP.NET Web Forms. The original
intention of this blog was to outline the travel and
cooking habits of the writer, but it could be customized to
discuss anything. On it, each post is made up of a body,
title, and date along with any number of corresponding
images that are uploaded by the user. When a page is
loaded, the posts are compiled in reverse chronological
order for the requester with the images on top. This
information will be pulled from the database, compiled
into HTML by the server, and then returned to the user’s
browser to be rendered.

B. Database

One of the most important parts of this project was
designing the database structure to compliment the code
that would be calling it. To this effect, I created a
database named “SS BLOG” that holds the two tables
that comprise the data structure for this project.

1) Database Tables:

1) SS POSTS - This table holds all of the non-image
information contained in a post. Because a post can
only contain at most one post title, post date, and
post body, this table is suitable for holding these
records. There will be a number of posts equal to
the number of rows in this table. This table has
the columns:

• POST ID - Primary Key, INT, NOT NULL.
• POST TITLE - VARCHAR(500), NULL. Ti-

tle of the post.
• POST DATE - DATETIME, NULL. Date of

the post.
• POST BODY - VARCHAR(MAX), NULL.

Body of the post.

2) SS IMAGES - This table holds all of the image-
based information contained ina post. It does this
by specifying the post id of a given post. This
allows a 1 to many relationship which allows for
the easy incorporation of multiple pictures into a
single post.

• IMAGE ID - Primary Key, Int, NOT NULL.
• IMAGE POSTID - Int, NOT NULL. Post id

this image belongs to.
• IMAGE PATH - VARCHAR(500), NOT

NULL. Path / file name of the image.

2) Database Stored Procedures: Many of the queries
that retrieve data for this project are written in the code,
but two more complicated procedures for inserting blog
entries and images are included as stored procedures
inside the database. These can be seen in Figures 14
and 15.

10

@postTitle AS VARCHAR(500),
@postBody AS VARCHAR(MAX)

AS
BEGIN

INSERT INTO dbo.ss_posts
(post_title, post_date, post_body)
VALUES
(@postTitle, GETDATE(), @postBody)

SELECT SCOPE_IDENTITY() AS ’postID’

END

Fig. 14: This stored procedure – dbo.insert blog entry inserts
the title, body, and current date into a new SS POSTS entry.
It is called by the new entry page in the application.

@postID AS INTEGER,
@imagePath AS VARCHAR(500)

AS
BEGIN

INSERT INTO dbo.ss_images
(image_postid, image_path)
VALUES
(@postID, @imagePath)

END

Fig. 15: This stored procedure – dbo.insert blog entry image
inserts the image path and post id for an image into the
SS IMAGES table. There can be many image entries for a
single post.

C. Creating a New Entry

A user is able to create a new post by using the new
entry screen as seen in Figure 16. This page allows the
user to input the title, body, and any pictures they would
like on the blog post. To do this, the filenames of the
images and the files are uploaded to the server. A new
BlogEntry object is created using the title, body, and
list of images, and then the InsertBlogEntry() function
shown in Figure 17. This function calls the stored proce-
dure shown in Figure 14 which returns the POST ID of
that image. This primary key value is then used when the
stored procedure in Figure 15 is called for each image
in the blog entry. After this, the user is redirected to
the default page of the blog where the newly added
post will appear at the top. Creating the BlogEntry class

will reduce the amount of code necessary in the “code
behind” vb file increasing its readability.

D. Generating the Default.aspx Page

When a user requests the default blog page, the Page
Load event will be called. As shown in Figure 19,
this event will retrieve all entries from the SS POSTS
table in the database, put these into BlogEntry objects,
compile the HTML, and send it back to the user. Printing
the HTML dynamically allows the page to display as
many images as the writer selected without sacrificing
the time needed for a developer to physically create the
image links in HTML. An example blog entry shown in
Figure 18. A future extension of this would be to reduce
the number of BlogEntries per page. This would enable
the page to load faster and ultimately increase usability.

Overall, this prototype took about 7 hours of pro-
gramming. If a developer has even more experience
with ASP.NET, it would have taken less. Because of the
heavy lifting performed by .NET Framework functions,
a smaller amount of code needs to be written when
developing these applications. ASP.NET provides a way
for developers to create useful applications with minimal
programming.

VI. FUTURE TRENDS

A. The Future of ASP.NET

ASP.NET was originally developed by Microsoft
as a replacement for the original Active Server Pages
technology. Since then, the development world has
seen Microsoft incorporate many programming and
scripting languages as well as create an extensive
class library that provides access to databases, security
algorithms, networking functions, and application
development tools. It is through this that .NET has
gained its popularity and it is through extensions
of these frameworks that Microsoft’s technology will
evolve. One of the most recent additions to the repertoire
of Microsoft is that of Windows Azure – an “open
and flexible cloud platform that enables you to quickly
build, deploy, and manage applications across a global
network of Microsoft-managed datacenters” [16]. This
is an extension of the current .NET Framework and
over the next few years it will become more common.
Overall, it will allow companies to more rapidly
develop and deploy web applications throughout the
world and provide load-balancing services as well as a
pay-as-you-go expense model.

11

Fig. 16: This figure shows the entry screen as seen by the blog administrator. This allows the user to enter a title, body, and
select images to be uploaded to the server.

Public Sub InsertBlogEntry()
Dim cmd As New SqlCommand("EXEC dbo.insert_blog_entry @postTitle, _

@postBody", ssBlog)
Dim postID As Integer = 0
cmd.Parameters.AddWithValue("@postTitle", postTitle)
cmd.Parameters.AddWithValue("@postBody", postBody)

ssBlog.Open()
postID = cmd.ExecuteScalar()
ssBlog.Close()

cmd.Parameters.Clear()
cmd.CommandText = "EXEC dbo.insert_blog_entry_image @postID, @imagePath"
cmd.Parameters.AddWithValue("@postID", postID)

For Each path As String In imageList
cmd.Parameters.AddWithValue("@imagePath", "site_images\" + path)

ssBlog.Open()
cmd.ExecuteScalar()
ssBlog.Close()

cmd.Parameters.RemoveAt("@imagePath")
Next

End Sub

Fig. 17: This function will insert a new blog entry and all images in the imagelist into the database. It does this by storing
the new POST ID returned from the first stored procedure and using it to relate the images to the blog entry.

12

Fig. 18: This is an example blog entry. The text, date, and placeholder text are shown along with the only image associated
with this post.

In addition to advances in the deployment and archi-
tecture of ASP.NET applications, Microsoft will continue
to contribute heavily to development programs in col-
leges. Their Dreamspark campaign gives all students at
eligible schools access to Microsoft’s development tools
– SQL Server, Visual Studio, and more. Because this
has been successful in driving the interest of students
to learn Microsoft technologies, they will continue to
extend the offerings of this service. As can be seen in
Figure 20, .NET technologies have seen a large spike
in job postings. By increasing the number of developers
that enjoy the .NET Framework, Microsoft will be able
to affect the status quo of development technologies in
their favor.

In recent years, Microsoft has begun open-sourcing
many portions of the .NET Framework. Although this
decision is very late in the evolution of .NET, it will
allow more developers to contribute to the projects.
Ultimately, since Microsoft has started this initiative
along with those that offer rapid development processes,
they will maintain relevancy and potentially begin to
dominate the market. Historically, Microsoft has lagged
behind when developing products for new portions of

the technology market (ie Bing, Surface, etc.). When
their technologies reach maturity, however, they’ve con-
sistently produced strong products. As .NET grows,
Microsoft will likely continue to increase community
involvement and incorporate these features into the stan-
dard software.

B. The Future of JSP’s

Although JSP’s and Servlets have played a critical
role in the evolution of web applications, it is mostly
through their community-driven extensions that this
growth has taken place. Thus, it is through improvements
of these extensions that JSP’s and Servlets will continue
to improve. However, after the recent Heartbleed
vulnerability in the OpenSSL technology, many open-
source projects are facing heavy criticism. Because of
this, some of the open-source projects such as Spring
and Struts could face global scrutiny. So, in the coming
years, it is likely that closed-source projects such as
Oracle’s Application Development Framework (ADF)
will gain popularity. The misconceptions surrounding
open-source technology could damage the foothold
JSP’s and Servlets have in the market.

13

Imports Microsoft.VisualBasic
Imports System.Data.SqlClient
Imports System.Web.Configuration
Imports System.Data
Imports System.Collections.Generic

Partial Class _Default
Inherits System.Web.UI.Page

Dim ssBlog As New SqlConnection(WebConfigurationManager. _
ConnectionStrings("ssBlog").ToString)

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load

Dim cmdGetEntries As New SqlCommand("SELECT * FROM dbo.ss_posts " _ +
"ORDER BY post_date DESC", ssBlog)

Dim dt As New DataTable
Dim adapt As New SqlDataAdapter
adapt.SelectCommand = cmdGetEntries

ssBlog.Open()
adapt.Fill(dt)
ssBlog.Close()

Dim blogEntry As BlogEntry
Dim entryList As New List(Of BlogEntry)

’Insert a new entry for each data row retrieved
For Each dr As DataRow In dt.Rows

blogEntry = New BlogEntry(dr("post_id"), dr("post_title"), _
dr("post_date"), dr("post_body"))

entryList.Add(blogEntry)
Next

For Each be As BlogEntry In entryList
contentContainer.InnerHtml += be.GetEntryHTML()

Next
End Sub

End Class

Fig. 19: This function will pull all entries from the SS POSTS table, put them into BlogEntry objects, and subsequently display
them in HTML for the user.

14

Fig. 20: Presence of key technology terms on Indeed - a job search engine. [5]

Also, unlike ASP.NET, there are fewer official re-
sources available for learning these frameworks. Often
times training new employees to develop with these
technologies is time consuming. This increased training
time for new employees is one of the factors that has
led to the overall decline in both Java and JSP job
postings as shown in Figure 20. However, many new
methods for learning these technologies are surfacing,
but improvement is still needed. In the future, it is likely
that as different JSP frameworks become popular, the
documentation will improve and the learning curve will
decrease. These frameworks have the potential to keep
pace with .NET’s growth, but more resources are needed
for developers.

VII. CONCLUSION

As web and cloud-based technology becomes more
prominent, the demand for web applications will in-
crease. Because of this, companies will look for technol-
ogy stacks that are easily expandable, cost-effective, and
quickly developed. Through this prototype, it has been
demonstrated that ASP.NET is easy to develop with and
also very expandable. However, this convenience costs
both money and the ability to customize the programs.
Microsoft is attempting to combat this inflexibility by
pushing their projects to open-source, but for the time be-
ing the page life cycle is not entirely open to developers.
JSP’s, on the other hand, allow developers access to the

whole life cycle, are much less expensive to implement,
and have been open-source for over a decade. The result
of this is community-built frameworks based on JSP’s
that can assist in the creation of applications. Now, when
choosing which technology to use, it depends on what
technologies it will need to exist with, the skill set of the
developers, and the amount of money available to spend.
Both of these offerings are equally effective in creating
large-scale web applications.

15

REFERENCES

[1] Microsoft Corporation. ASP Tutorial Write Run ASP Pages. [Online]. Available: http://msdn.microsoft.com/en-us/library/ms972337.aspx#
asptutorial writerun

[2] W3Schools. Try it yourself javascript. [Online]. Available: http://www.w3schools.com/js/tryit.asp?filename=tryjs create object1
[3] Tom Woolum. IIS 7.0 HTTP Request Processing. [Online]. Available: http://blogs.iis.net/tomwoolums/archive/2008/12/16/

iis-7-0-http-request-processing.aspx
[4] Tutorials Point. JSP - Architecture. [Online]. Available: http://www.tutorialspoint.com/jsp/jsp architecture.htm
[5] Job trends from indeed.com. [Online]. Available: http://www.indeed.com/trendgraph/jobgraph.png?q=jsp%2C+Java%2C+.NET%2C+asp.net
[6] Microsoft Corporation, “Active Server Pages.” [Online]. Available: http://msdn.microsoft.com/en-us/library/aa286483.aspx
[7] ——. Common Language Runtime. [Online]. Available: http://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspxn
[8] ——. ASP.NET Overview. [Online]. Available: http://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx
[9] Paul Sheriff. Introduction to ASP.NET and Web Forms. [Online]. Available: http://msdn.microsoft.com/en-us/library/ms973868.aspx#

introwebforms topic1
[10] Microsoft Corporation. Microsoft Dreamspark. [Online]. Available: https://www.dreamspark.com/
[11] ——. Introduction to ASP.NET Web Forms. [Online]. Available: http://www.asp.net/web-forms/what-is-web-forms
[12] Oracle Corporation. Java Server Pages Overview. [Online]. Available: http://www.oracle.com/technetwork/java/overview-138580.html
[13] Tutorials Point. JSP - Overview. [Online]. Available: http://www.tutorialspoint.com/jsp/jsp overview.htm
[14] Chua Hock-Chuan. Getting started with JSP by Examples. [Online]. Available: http://www3.ntu.edu.sg/home/ehchua/programming/java/

JSPByExample.html
[15] Microsoft Corporation. ASP.NET Integration with IIS 7. [Online]. Available: http://www.iis.net/learn/application-frameworks/

building-and-running-aspnet-applications/aspnet-integration-with-iis
[16] Microsoft azure overview. [Online]. Available: http://www.azure.microsoft.com/en-us/overview/what-is-azure/

APPENDIX

A. Reflection of Learning

Throughout my many years of college, I’ve learned one thing: with enough time and effort, I can conquer
anything. When I started out at Saint John’s, quite frankly, I struggled. My accounting classes were boring and I
didn’t feel challenged. As a result, I nearly failed out of school. Since then, I’ve learned the importance of hard
work and forced myself to keep my head up as I finish classes that I do not care for. At the end of the day it was
my job at Nahan Printing, Inc. that allowed me to apply the skills I learned in my education. While some of the
classes I attended were more helpful than others, in the end I took something away from each of them.

1) The Impact of Previous Experiences: This project was not directly impacted by my previous coursework; it
was through these courses that I attained a strong base skill in programming. It is because of this skill that I have
been able to pick up this material so quickly. Two of the specific classes that helped me are Computer Science II
and Systems Development at Saint Cloud State University. These were two of the most challenging programming
classes I’ve ever taken. It was from here that my knowledge base started and it was at my job as an Application
Developer at Nahan Printing that these skills improved. These classes taught me about modular program design and
object-oriented design concepts. For example, in my project I implemented an object (BlogEntry.vb) that allowed
my prototype to function smoothly with minimal code in the files. However, this project also showed me that I
could have extended this design further and made my code even more readable.

At Nahan Printing, we do a lot of work with ASP.NET Web Forms. This gave me a very strong base for this
project. However, I learned a lot about these topics that I didn’t know before. For example, printing out HTML
text directly into a “div” is something I had never done before. This allowed me to generate a page entirely on
the server-side. Another thing I learned is how to set up a database server. I had used databases, created new
tables, and made numerous lengthy queries prior to this, but I had never installed/created my own database. This is
good experience for me because it provides me with infrastructure and architecture experience. Connecting to this
database was challenging, but the experience it provided me with was worth it.

2) Impact on My Future: In addition to Computer Science 373, I am also taking Computer Science 230. I
implemented a JSP application that allows a user to view, compare, and save universities to find the one that is
right for them. Unfortunately, I was met with significant chaos on my school computing account when attempting
to create this project, so I ended up hosting my own database and tomcat instance on my virtual private server.
During this process, I was forced to troubleshoot many of the same problems I experienced connecting to a database
with ASP.NET. I was also able to gain an appreciation for everything that ASP.NET implements for the developer
by default. However, I did like the flexibility I had with the JSP’s. I think that being able to directly compare and
contrast these two types of programs during development gave me significant insight into their differences. This

http://msdn.microsoft.com/en-us/library/ms972337.aspx#asptutorial_writerun
http://msdn.microsoft.com/en-us/library/ms972337.aspx#asptutorial_writerun
http://www.w3schools.com/js/tryit.asp?filename=tryjs_create_object1
http://blogs.iis.net/tomwoolums/archive/2008/12/16/iis-7-0-http-request-processing.aspx
http://blogs.iis.net/tomwoolums/archive/2008/12/16/iis-7-0-http-request-processing.aspx
http://www.tutorialspoint.com/jsp/jsp_architecture.htm
http://www.indeed.com/trendgraph/jobgraph.png?q=jsp%2C+Java%2C+.NET%2C+asp.net
http://msdn.microsoft.com/en-us/library/aa286483.aspx
http://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspxn
http://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx
http://msdn.microsoft.com/en-us/library/ms973868.aspx#introwebforms_topic1
http://msdn.microsoft.com/en-us/library/ms973868.aspx#introwebforms_topic1
https://www.dreamspark.com/
http://www.asp.net/web-forms/what-is-web-forms
http://www.oracle.com/technetwork/java/overview-138580.html
http://www.tutorialspoint.com/jsp/jsp_overview.htm
http://www3.ntu.edu.sg/home/ehchua/programming/java/JSPByExample.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/JSPByExample.html
http://www.iis.net/learn/application-frameworks/building-and-running-aspnet-applications/aspnet-integration-with-iis
http://www.iis.net/learn/application-frameworks/building-and-running-aspnet-applications/aspnet-integration-with-iis
http://www.azure.microsoft.com/en-us/overview/what-is-azure/

16

will help me in my next job where I will be doing Oracle Software Consulting for a company in Des Moines,
Iowa. These programs have definitely shaped the way I view my applications and made me want to become a more
effective application developer. This project directly influenced this opinion by offering me the chance to examine
both technologies and implement an ASP.NET program.

An additional note: learning LATEX was one of the most helpful things about this class. It will fundamentally
change the way in which I write official documentation in the future. I was able to apply my skills learned to both
work and other courses. It is a very effective tool and I am glad to have learned about it.

B. Full Code Listing

1) NewEntry.aspx:

<%@ Page Title="" Language="VB" MasterPageFile="˜/MasterPage.master"
AutoEventWireup="false" CodeFile="NewEntry.aspx.vb" Inherits="NewEntry" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">

<div id="formTitle">
New Entry
</div>
<div id="formContainer" runat="server">

<table>

<tr>
<td>

<asp:Label ID="lblTitle" runat="server" Text="Title: "
Font-Bold="true" CssClass="postBody">

</asp:Label>
</td>
<td>

<asp:TextBox ID="txtTitle" runat="server" Width="350px" Height="50px"
MaxLength="500" TextMode="Multiline">

</asp:TextBox>
</td>

</tr>
<tr>

<td style="vertical-align: top;">
<asp:Label ID="lblBody" runat="server" Text="Body: " Font-Bold="true"
CssClass="postBody">

</asp:Label>
</td>
<td>

<asp:TextBox ID="txtBody" runat="server" Width="450px" Height="200px"
MaxLength="5000" TextMode="MultiLine"></asp:TextBox>

</td>
</tr>
<tr>

<td>
<asp:Label ID="lblPictures" runat="server" Text="Images: "
Font-Bold="true" CssClass="postBody">
</asp:Label>

</td>
<td>

<asp:FileUpload ID="upControl" runat="server" AllowMultiple="True" />
</td>

</tr>

17

<tr>
<td></td>
<td>

<asp:Button ID="addNew" runat="server" Text="Create New"
UseSubmitBehavior="false" />

</td>
</tr>

</table>

</div>
</asp:Content>

2) NewEntry.aspx.vb:

Partial Class NewEntry
Inherits System.Web.UI.Page

Protected Sub addNew_Click(sender As Object, e As EventArgs) Handles addNew.Click

Dim imageList As New List(Of String)

’Save Files into Data Folder & make list of filenames
If upControl.HasFiles() Then

For Each file As HttpPostedFile In upControl.PostedFiles
imageList.Add(file.FileName)
file.SaveAs("D:\My Documents\Visual Studio 2013\WebSites\ "_ +
"Salty\site_images\" + file.FileName)

Next
End If
Dim blogEntry As New BlogEntry(txtTitle.Text, txtBody.Text, imageList)
blogEntry.InsertBlogEntry()

Response.Redirect("˜/Default.aspx")
End Sub

End Class

3) Default.aspx:

<%@ Page Title="" Language="VB" MasterPageFile="˜/MasterPage.master"
AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits="_Default" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">

<div id="contentContainer" runat="server">

</div>

<asp:SqlDataSource ID="SqlDataSource1" runat="server"></asp:SqlDataSource>
</asp:Content>

18

4) Default.aspx.vb:

Imports Microsoft.VisualBasic
Imports System.Data.SqlClient
Imports System.Web.Configuration
Imports System.Data
Imports System.Collections.Generic

Partial Class _Default
Inherits System.Web.UI.Page

Dim ssBlog As New SqlConnection(WebConfigurationManager. _
ConnectionStrings("ssBlog").ToString)

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load

Dim cmdGetEntries As New SqlCommand("SELECT * FROM dbo.ss_posts " _ +
"ORDER BY post_date DESC", ssBlog)

Dim dt As New DataTable
Dim adapt As New SqlDataAdapter
adapt.SelectCommand = cmdGetEntries

ssBlog.Open()
adapt.Fill(dt)
ssBlog.Close()

Dim blogEntry As BlogEntry
Dim entryList As New List(Of BlogEntry)

’Insert a new entry for each data row retrieved
For Each dr As DataRow In dt.Rows

blogEntry = New BlogEntry(dr("post_id"), dr("post_title"), _
dr("post_date"), dr("post_body"))

entryList.Add(blogEntry)
Next

For Each be As BlogEntry In entryList
contentContainer.InnerHtml += be.GetEntryHTML()

Next

End Sub

End Class

5) BlogEntry.vb:

Imports Microsoft.VisualBasic
Imports System.Data.SqlClient
Imports System.Web.Configuration
Imports System.Data
Imports System.Collections.Generic

Public Class BlogEntry

19

#Region "Blog Variables"
Private ssBlog As New SqlConnection(WebConfigurationManager. _

ConnectionStrings("ssBlog").ToString)
Public postID As Integer
Public postTitle As String
Public postDate As Date
Public postBody As String
Public imageList As List(Of String)

#End Region

Public Sub New()
Me.postID = -1
Me.postTitle = Nothing
Me.postDate = Nothing
Me.postBody = Nothing

End Sub

’constructor that creates the image list for the entry
Public Sub New(ByVal postID As Integer, ByVal postTitle As String, _

ByVal postDate As Date, ByVal postBody As String)
Me.postID = postID
Me.postTitle = postTitle
Me.postDate = postDate
Me.postBody = postBody
imageList = New List(Of String)
GetEntryImages()
ChangeNulltoEmpty()

End Sub

Public Sub New(ByVal postTitle As String, ByVal postBody As String, _
ByVal imageList As List(Of String))

Me.postID = -1
Me.postTitle = postTitle
Me.postBody = postBody
Me.imageList = imageList

End Sub

’Change all db null values to empty
Private Sub ChangeNulltoEmpty()

postTitle = CheckNull(postTitle)
postDate = CheckNull(postDate)
postBody = CheckNull(postBody)

End Sub

’Check for null database values
Private Function CheckNull(ByVal e As String) As String

If (IsDBNull(e)) Then
Return Nothing

Else
Return e

End If
End Function

Public Sub GetEntryImages()
Dim cmdGetImages As New SqlCommand("SELECT image_path " _

+ "FROM dbo.ss_images " _
+ "WHERE image_postid = " _
+ postID.ToString, ssBlog)

Dim dt As New DataTable

20

Dim adapt As New SqlDataAdapter(cmdGetImages)

ssBlog.Open()
adapt.Fill(dt)
ssBlog.Close()

If Not IsNothing(dt) Then
For Each dr As DataRow In dt.Rows

imageList.Add(CheckNull(dr("image_path")))
Next

End If
End Sub

Public Function GetEntryHTML() As String
Dim html As String = ""

html = "<div class=’postContainer’>" _
+ "<div class=’postTitle’>" _
+ "<h1>" + postTitle + "</h1>" _
+ "<h2>" + Day(postDate).ToString + " " _
+ MonthName((Month(postDate)).ToString).ToUpper _
+ " " + Year(postDate).ToString + "</h2>" _
+ "</div>"

’add images to html
For Each s As String In imageList

html += ""
Next

’Replace all carriage returns with a line break
html += "<div class=’postBody’>" _

+ postBody.Replace(vbCr, "
") _
+ "</div>"

html += "</div>"
Return html

End Function

Public Sub InsertBlogEntry()
Dim cmd As New SqlCommand("EXEC dbo.insert_blog_entry " _

+"@postTitle, @postBody", ssBlog)
Dim postID As Integer = 0
cmd.Parameters.AddWithValue("@postTitle", postTitle)
cmd.Parameters.AddWithValue("@postBody", postBody)

ssBlog.Open()
postID = cmd.ExecuteScalar()
ssBlog.Close()

cmd.Parameters.Clear()
cmd.CommandText = "EXEC dbo.insert_blog_entry_image @postID, @imagePath"
cmd.Parameters.AddWithValue("@postID", postID)

For Each path As String In imageList
cmd.Parameters.AddWithValue("@imagePath", "site_images\" + path)

ssBlog.Open()
cmd.ExecuteScalar()
ssBlog.Close()

cmd.Parameters.RemoveAt("@imagePath")

21

Next
End Sub

End Class

	Introduction
	Survey
	Static vs Dynamic Webpages
	Incorporating Classic ASP into the .NET Framework

	Technical Analysis
	ASP.NET Web Forms
	Introduction to Web Forms
	Application Creation

	JSP's and Servlets
	Introduction to JSP's and Servlets
	Application Creation

	A Syntactical Comparison of ASP.NET, JSP, and Servlets

	Application Server Design
	Internet Information Server
	Introduction to IIS
	IIS Processing Architecture

	JSP Application Servers
	Introduction to JSP Application Servers
	JSP Processing Architecture

	Speak Salty Blog – The Prototype
	Introduction to Speak Salty
	Database
	Database Tables
	Database Stored Procedures

	Creating a New Entry
	Generating the Default.aspx Page

	Future Trends
	The Future of ASP.NET
	The Future of JSP's

	Conclusion
	References
	Appendix
	Reflection of Learning
	The Impact of Previous Experiences
	Impact on My Future

	Full Code Listing
	NewEntry.aspx
	NewEntry.aspx.vb
	Default.aspx
	Default.aspx.vb
	BlogEntry.vb

