
E4S: The Extreme-scale Scientific
Software Stack for Collaborative
Open Source Software

Michael A. Heroux, Sandia National Laboratories
Director of Software Technology, ECP

Sameer Shende, University of Oregon
E4S Technical Lead

Getting Started with E4S for Industry and Agencies Workshop, June 14, 2021

Brief Intro to the
Exascale Computing
Project (ECP)

3

Application Development (AD) Software Technology (ST) Hardware and Integration (HI)

Integrated delivery of ECP products
on targeted systems at leading DOE

HPC facilities

6 US HPC vendors
focused on exascale node and system

design; application integration and
software deployment to Facilities

Deliver expanded and vertically
integrated software stack to achieve
full potential of exascale computing

71 unique software products
spanning programming models and

run times,
math libraries,

data and visualization

Develop and enhance the predictive
capability of applications critical to

DOE

24 applications
National security, energy,

Earth systems, economic security,
materials, data

6 Co-Design Centers
Machine learning, graph analytics,

mesh refinement, PDE discretization,
particles, online data analytics

ECP’s holistic approach uses co-design and integration to
achieve exascale computing

Performant mission and science applications at scale

Aggressive
RD&D project

Mission apps; integrated
S/W stack

Deployment to DOE
HPC Facilities

Hardware
technology advances

4

DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/Intel

ANL
Intel/HPE

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel Xeon/KNL

2012-2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon/KNL

Sierra

Exascale
Systems

d
e

c
o
m

m
is

s
io

n
e
d Aurora

Brief Intro to ECP
Software Technology
(ST) Focus Area

6

ECP Software Technology (ST)

Develop and deliver high-quality
and robust software products

Guide, and complement, and

integrate with vendor efforts

Prepare SW stack for scalability
with massive on-node parallelism

Extend existing capabilities when

possible, develop new when not

Goal
Build a comprehensive, coherent
software stack that enables
application developers to
productively develop highly
parallel applications
that effectively target
diverse exascale
architectures

7

ECP ST has six technical areas

Programming
Models &
Runtimes

•Enhance and get
ready for exascale
the widely used MPI
and OpenMP
programming models
(hybrid programming
models, deep
memory copies)

•Development of
performance
portability tools (e.g.
Kokkos and Raja)

•Support alternate
models for potential
benefits and risk
mitigation: PGAS
(UPC++/GASNet)
,task-based models
(Legion, PaRSEC)

•Libraries for deep
memory hierarchy
and power
management

Development
Tools

• Continued,
multifaceted
capabilities in
portable, open-
source LLVM
compiler
ecosystem to
support expected
ECP
architectures,
including support
for F18

• Performance
analysis tools that
accommodate
new
architectures,
programming
models, e.g.,
PAPI, Tau

Math Libraries

•Linear algebra,
iterative linear
solvers, direct linear
solvers, integrators
and nonlinear
solvers,
optimization, FFTs,
etc

•Performance on
new node
architectures;
extreme strong
scalability

•Advanced
algorithms for multi-
physics, multiscale
simulation and
outer-loop analysis

•Increasing quality,
interoperability,
complementarity of
math libraries

Data and
Visualization

• I/O via the HDF5
API

• Insightful,
memory-efficient
in-situ
visualization and
analysis – Data
reduction via
scientific data
compression

• Checkpoint
restart

NNSA ST

• Open source
NNSA Software
projects

• Projects that
have both
mission role and
open science role

• Major technical
areas: New
programming
abstractions,
math libraries,
data and viz
libraries

• Cover most ST
technology areas

• Subject to the
same planning,
reporting and
review processes

Software
Ecosystem

•Develop features in
Spack necessary to
support all ST
products in E4S,
and the AD projects
that adopt it

•Development of
Spack stacks for
reproducible turnkey
deployment of large
collections of
software

•Optimization and
interoperability of
containers on HPC
systems

•Regular E4S
releases of the ST
software stack and
SDKs with regular
integration of new
ST products

8

We work on products applications need now and into the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage

Viz/Data Analysis ParaView-related product development, node concurrency

Key themes:

• Focus: GPU node architectures and advanced memory & storage technologies

• Create: New high-concurrency, latency tolerant algorithms

• Develop: New portable (Nvidia, Intel, AMD GPUs) software product

• Enable: Access and use via standard APIs
Software categories:

• Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, PETSc)

• Robust emerging products: Address key new requirements (e.g., Kokkos, RAJA, Spack)

• New products: Enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

Progress toward
Exascale readiness

10

Scope and objectives

• SLATE is a distributed, GPU-accelerated, dense linear
algebra library, intended to replace ScaLAPACK

• SLATE covers parallel BLAS, linear system solvers,
least squares, eigensolvers, and the SVD

Accomplishment

• Refactored SLATE to use BLAS++ as portability layer

• Ported BLAS++ to AMD rocBLAS and Intel oneMKL

Impact

• Initially supported NVIDIA’s cuBLAS for use on current
machines like Summit

• Can now use AMD’s rocBLAS in preparation for Frontier,
and Intel’s oneMKL in preparation for Aurora

• Other projects can also leverage BLAS++ for portability

Port to AMD and Intel

SLATE port to AMD and Intel platforms ECP WBS 2.3.3.13 CLOVER (SLATE)

PI Jack Dongarra, UTK

Members UTK

Deliverables Report: https://www.icl.utk.edu/publications/swan-016
Code in git repos: bitbucket.org/icl/slate/ and bitbucket.org/icl/blaspp/

• SLATE and BLAS++ now support all three major GPU
platforms

https://www.icl.utk.edu/publications/swan-016
http://bitbucket.org/icl/slate/
http://bitbucket.org/icl/blaspp/

11

Scope and objectives

• Kokkos provides the C++ based based Programming
Model for Performance Portability for Sandia and many
applications at partner institutions

• The goal is to enable single source applications and
libraries to simply recompile for new architectures
including Exascale Platforms.

Kokkos Update and MaintenanceAMD Support

Support and Development

Kokkos: Support and AMD Functionality. ECP WBS 2.3.6.03 – SNL ATDM ST

PI Christian Trott, SNL

Members SNL

Deliverables Kokkos: https://github.com/kokkos/kokkos
Slack: https://kokkosteam.slack.com

• Slack continues to be
primary support vehicle

• Regular meetings with NNSA
customers for progress
updates held

• Continue >50 PRs merged
per month

• Release 3.3 rolled

• Near Feature Complete Support for HIP

• Added support for Intel OneAPI compiler

• Added support for Fujitsu ARM A64FX and Fujitsu compiler

• Improved Spack support

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly

owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administrati on under contract DE-NA-0003525.

0

50

100

150

200

Q1
FY20

Q2
FY20

Q3
FY19

Q4
FY20

Q1
FY21

PRs Merged

• Support for everything KokkosKernels and Trilinos need

• Provided changes for Trilinos to enable Krylov solver

• Tpetra, Belos fully compile

• Tpetra >95% of tests pass

• Still running into known AMD bug, reported mid 2020

https://jira.exascaleproject.org/browse/STNS03
https://github.com/kokkos/kokkos
https://kokkosteam.slack.com/

12

• Implemented application-specific FFT optimizations and tuning for
systems with Nvidia and AMD GPUs;

• Added Intel GPU support;

• Released heFFTe 2.1 featuring with new application-specific
optimizations, tuning, and added Intel GPU support;

• heFFTe Integration and acceleration within CoPA projects and
ExaAM/Meumapps.

Project accomplishment

Scope and objectives

• Design and implement a sustainable FFT library for Exascale platforms

• Define consistent FFT-ECP APIs for FFTs on Exascale systems to help key ECP
applications that need FFT functionalities to run at exascale

• FY21 plan: develop application-specific FFTs, optimizations, and integration in
ECP applications; add HIP and DPC++ backends to support AMD and Intel GPUs;

• Milestone driver: Implement multidimensional FFTs and optimizations in heFFTe
for applications where the input data is purely real.

Impact

• Developed application-specific FFT optimizations and integration
within Copa and ExaAM applications;

• Provide ECP applications acceleration for their FFT computations
on various GPU-accelerated heterogeneous architectures with
GPUs from Nvidia, AMD, and Intel;

• FFT-ECP stakeholders are application developers, e.g., LAMMPS
and HACC, Copa and ExaAM, as well as ECP vendors where
heFFTe enables FFT applications to run more efficiently on current
and upcoming platforms.

heFFTe 2.1 Release

FY21: FFT: Application-specific FFT optimizations and
 integration within Copa and ExaAM

ECP WBS 2.3.3.13 FFT-ECP

PI Jack Dongarra, (UTK – ICL)

Members
Stan Tomov (UTK – ICL),
Alan Ayala (UTK – ICL),
Miroslav Stoyanov (ORNL)

Deliverables heFFTe 2.1 http://icl.utk.edu/fft/ multidimensional FFTs and application-specific optimizations with added Intel GPUs support.
Relation projects: ECP LAMMPS, HACC, CoPA, Cabana, Alpine, FFTX, SLATE, xSDK, and MAGMA (http://icl.cs.utk.edu/magma/)
ExaWind, EMPIRE/PIC/PICSAR, WarpX, ExaSky, LaticeQCD/MILC, EXAALT, ExaAM, QMCPACK, NWChemEx

• Profile on running LAMMPS
Rhodopsin benchmark with
FFTMPI using 128 Summit
nodes on a 10243 FFT;

• heFFTe with cuFFT backend
accelerates FFT 2X compared
to FFTMPI and 25% the entire
application

http://icl.utk.edu/fft/
http://icl.cs.utk.edu/magma/

13

Scope and objectives

• This project focuses on enhancements for hypre and
SUNDIALS in preparation for exascale systems

• Goals for hypre include increasing GPU-enabled portions
as well as portability.

• This milestone evaluates and analyzes the GPU and CPU
performance of structured and unstructured solvers in
hypre for various problems on Lassen and Summit.

• Measured GPU and CPU performance of hypre’s
structured and unstructured solvers on a variety of
problems on Lassen and Summit.

• Analyzed and summarized the results in a document that
is available on confluence.

Impact

• Linear systems are an important part of many application
codes, and often make up a large portion of their
execution times.

• Efficient linear solvers are crucial for ECP applications,
and any improvements in performance and memory
usage positively impact the applications.

Document on Performance Evaluation of
Solvers in hypre 2.20.0

ECP WBS

PI

Members

Milestone Lead

WBS 2.3.3.12

Carol Woodward, LLNL

LLNL

Ulrike Meier Yang, LLNL

Deliverables The document is available at https://confluence.exascaleproject.org/display/STLM12/Software+Documents in file
‘Performance Evaluation of hypre Solvers.pdf’

Project accomplishment

Comparing hypre’s GPU and CPU performance

Weak scaling study
of AMG-PCG applied
to an unstructured
problem on a
crooked pipe
on Lassen using
1, 2, or 16 nodes.
‘CPU’ uses same
parameters as ‘GPU’
including a newly
designed interpolation.
‘CPU-old’ uses the old
Interpolation. Presented are
setup, solve and total times,
including Speedups (CPU/GPU)

https://confluence.exascaleproject.org/display/STLM12/Software+Documents

14

Key Product Development Takeaways

ECP ST teams are creating new algorithms
that effectively expose and exploit massive

on-node parallelism, in addition to MPI

ECP ST products are expanding support to
all GPU architectures: Nvidia, AMD, Intel

Application teams are increasingly relying
on ECP ST products to get performance &

portability

Getting portable
performance via E4S
products

16

Challenge: How can I port my code effectively and efficiently to
diverse and emerging architectures?

• Goals:

– Get performance

• Get all or most of the potential performance on a platform (varies with specific situation)

• Get on the commodity performance curve: Porting to next similar system, say 2X faster, your code is about 2X faster

– Get portability

• Minimize how much special code needs to be written for each target platform

• Can be done by using portability layers, language features, libraries that provide functionality across many systems

• Examples:

– Use Kokkos to write your parallel loops:

• Enables performance across multiple platforms by compiling with a backend that transforms your loops for the target

• Targets can be Intel CPU, Nvidia GPU, AMD GPU, Intel GPU, Arm SVE, future parallel devices

– Use PETSc to solve large sparse linear systems:

• PETSc runs well on CPUs and GPUs, adapting algorithms and implementations behind the scenes

• Note: Assembling the sparse linear system for GPU systems needs to be done on the GPU, using, e.g., Kokkos

17

Writing your code for portable performance

OpenMP

• An open standard

• Target offload
supports GPUs

• Commonly used by
Fortran codes,
uncommon for C++

Cuda/HIP/SYCL

• Vendor specific, esp
CUDA

• HIP portable in
principle, but really
driven by AMD

• SYCL portable in
principle, but really
driven by Intel

Kokkos/RAJA

• Kokkos uses C++
template meta-
programming, widely
used, lots of training
and documentation

• RAJA more modular
design (e.g., loop vs
memory
management),
fundamental to LLNL
ecosystem

18

Using libraries for portable performance

Dense Lin Alg

• Vendors typically
provide, e.g., MKL

• ECP efforts provide
alternative for reference
and design ideas

FFTs

• Vendors provide
building blocks, e.g., 1D

• Many apps have their
own 3D framework

• heFFTe provides new
portable 3D library
emphasizing internode
scalability

Sparse Lin Alg

• Strong tradition for DOE

• Sparse direct:
SuperLU/STRUMPACK

• Sparse iterative: PETSc,
Trilinos/KokkosKernels

• Apps will need to move
problem construction to
GPU

19

Addressing IO Bottlenecks

HDF5

• Continued
evolution for
modern
platforms

ADIOS

• Alternative,
customizable
library

• Also becoming
available via
HDF5 API

Data
compression

• VeloC/SZ

• ZFP

• Libraries that
support in situ
compression

The Growing
Complexity of Scientific
Application Software
Stacks

21

Challenges

• As our software gets more complex, it is getting harder to
install tools and libraries correctly in an integrated and
interoperable software stack.

22

ECP apps (AD) are primary consumers of ST products
Dependency Database

View by AD consumers

View by ST producers

STHI

AD

ECP Internal
Dependencies

https://dx.doi.org/10.1038/s43588-021-00033-y

https://dx.doi.org/10.1038/s43588-021-00033-y
https://dx.doi.org/10.1038/s43588-021-00033-y

23

Scientific software is becoming extremely

complex

R Miner: R Data Mining Librarydealii: C++ Finite Element LibraryNalu: Generalized Unstructured Massively Parallel Low Mach Flow

24

• Half of this DAG is external (blue); more than half of it is open source

• Nearly all of it needs to be built specially for HPC to get the best performance

Even proprietary codes are based on many open source libraries

25

The Exascale Computing Project is building an entire ecosystem

• Every application has its own stack of dependencies.

• Developers, users, and facilities dedicate (many) FTEs to building & porting.

• Often trade reuse and usability for performance.

80+ software packagesx
5+ target architectures/platforms

Xeon Power KNL
NVIDIA ARM Laptops?

x

Up to 7 compilers

Intel GCC Clang XL
PGI Cray NAG

x

= up to 1,260,000 combinations!

15+ applications

x
10+ Programming Models

OpenMPI MPICH MVAPICH OpenMP CUDA
OpenACC Dharma Legion RAJA Kokkos

2-3 versions of each package +

external dependencies
x

We must make it easier to rely on others’ software!

26

How to install software on a supercomputer

c
o
n
f
i
g
u
r
e

m
a
k
e

F
i
g
h
t

w
i
t
h

c
o
m
p
i
l
e
r
.
.
.

m
a
k
e

T
w
e
a
k

c
o
n
f
i
g
u
r
e

a
r
g
s
.
.
.

m
a
k
e

i
n
s
t
a
l
l

m
a
k
e

c
o
n
f
i
g
u
r
e

c
o
n
f
i
g
u
r
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

c
m
a
k
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

1. Download all 16

tarballs you

need

2. Start building!

3. Run code

4. Segfault!?

5. Start

over…

27

• Most supercomputers deploy some form of environment modules

– TCL modules (dates back to 1995) and Lmod (from TACC) are the most popular

• Modules don’t handle installation!

– They only modify your environment (things like PATH, LD_LIBRARY_PATH, etc.)

• Someone (likely a team of people) has already installed gcc for you!

– Also, you can only `module load` the things they’ve installed

What about modules?

$ gcc
- bash: gcc: command not found

$ module load gcc/7.0.1
$ gcc –dumpversion
7.0.1

Spack Overview

29

Spack

• E4S uses the Spack package manager for software delivery

• Spack provides the ability to specify versions of software packages that are and are not

interoperable.

• Spack is a build layer for not only E4S software, but also a large collection of software tools

and libraries outside of ECP ST.

• Spack supports achieving and maintaining interoperability between ST software packages.

• https://spack.io

https://spack.io/

30

• How to install Spack (works out of the box):

• How to install a package:

• TAU and its dependencies are installed
within the Spack directory.

• Unlike typical package managers, Spack can also install
many variants of the same build.

– Different compilers

– Different MPI implementations

– Different build options

Spack is a flexible package manager for HPC

$ git clone https://github.com/spack/spack
$. spack/share/spack/setup-env.sh

$ spack install tau

@spackpm

github.com/spack/spack

Visit spack.io

https://github.com/LLNL/spack.git

31

• Each expression is a spec for a particular configuration

– Each clause adds a constraint to the spec

– Constraints are optional – specify only what you need.

– Customize install on the command line!

• Spec syntax is recursive

– Full control over the combinatorial build space

Spack provides the spec syntax to describe custom configurations

$ spack install tau unconstrained

$ spack install tau@2.30.1 @ custom version

$ spack install tau@2.30.1 %gcc@7.3.0 % custom compiler

$ spack install tau@2.30.1 %gcc@7.3.0 +level_zero +/- build option

$ spack install tau@2.30.1 %gcc@7.3.0 +mpi ^mvapich2@2.3~wrapperrpath ^ dependency information

$ git clone https://github.com/spack/spack
$. spack/share/spack/setup-env.sh
$ spack compiler find # set up compilers
$ spack external find # set up external packages

https://github.com/LLNL/spack.git

32

`spack find` shows what is installed

• All the versions coexist!

– Multiple versions of same
package are ok.

• Packages are installed to
automatically find correct
dependencies.

• Binaries work regardless of
user’s environment.

• Spack also generates
module files.

– Don’t have to use them.

33

• Spack simplifies HPC software for:

– Users

– Developers

– Cluster installations

– The largest HPC facilities

• Spack is central to ECP’s software strategy

– Enable software reuse for developers and users

– Allow the facilities to consume the entire ECP stack

• The roadmap is packed with new features:

– Building the ECP software distribution

– Better workflows for building containers

– Stacks for facilities

– Chains for rapid dev workflow

– Optimized binaries

– Better dependency resolution

The Spack community is growing rapidly

@spackpm

github.com/spack/spack

Visit spack.io

ECP SW Technology
Software Architecture –
SDKs

35

ECP applications rely on ST products across all technical areas

24 ECP applications: National security, energy, Earth systems, economic security, materials, data

6 co-design centers: machine learning, graph analytics, mesh refinement, PDE discretization, particles, online data analytics

Consider ECP software technologies needed by 5 ECP applications:

36

Wind Farm
(ExaWind)

Cosmology
(ExaSky)

National Security
(MAPP)

Fusion Energy
(WDMApp)ECP Applications:

Tools

Prog Models & Runtimes

Data and Viz

Ecosystems and Delivery

Math Libraries Legend

Selected ECP Software Technologies

… and moreSubsurface
Flow

Ecosystem: E4S at large

Spack

… and more

F N W

Programming Models
and Runtimes

MPI

Umpire

RAJA

CHAI

Kokkos

… and more

C F N WSC F N WS

F W

N S

N S

N S

Tools and
Technology

PAPI

Flux

Caliper

TAU

HPCToolkit

Compilers
and Support

LLVM

OpenMP

… and more

C F N WS

C F N W

C F N S

N S

C F S

F W

N

Math Libraries (xSDK)

ArborX

SUNDIALS

PETSc/TAO

SuperLU

MFEM

Trilinos

hypre

FFT

BLAS, LAPACK

STRUMPACK

… and more

N WS

F N S

F

WSF

WSF

N S

C W

C W

F W

N

zfp

ALPINE

Cinema

VTK-m

SZ

SPOT

Visualization Analysis
and Reduction

… and more

C N WS

C N

C F N WS

C

F N

N

Data Mgmt, I/O,
Checkpoint Restart

PnetCDF

ADIOS

UnifyFS

VeloC

HDF5

SCR

MPI-IO

… and more

C

N

F

C F N WS

W

F W

N

C F N S W

ECP applications require consistency across the software stack

24 apps,
6 co-design
centers

Shown are 36 ST products (used or being
considered by the 5 apps above)

ST overall has 71 unique software products
used by 24 apps and 6 co-design centers

ECP apps rely on multiple software technologies; some software products contribute to multiple distinctly developed
components of a multiphysics app (such as fusion energy modeling) that must run within a single executable.

See E4S.io
for more
ST products

AID
AML
BEE
Darshan
DTK
Dyninst
FleCSI
ForTriliinios
GASNet
Ginkgo
Kokkoskernels
Legion
libEnsemble
MarFS
NRM
OpenACC
Papyrus
PaRSEC
PDT
PowerStack
ScaLAPACK
SCR
SICM
SLATE
SWIG
Tasmanian
Umap
UPC++

37

ECP ST SDKs will span all technology areas

zfp

VisIt

ASCENT

Cinema

Catalyst

VTK-m

SZ

ParaView

Visualization Analysis
and Reduction (9)

ROVER

xSDK (16)

MAGMA

DTK

Tasmanian

TuckerMPI

SUNDIALS

PETSc/TAO

libEnsemble

STRUMPACK

SuperLU

ForTrilinos

SLATE

MFEM

Kokkoskernels

Trilinos

hypre

FleSCI

PMR Core (17)

UPC++

MPICH

Open MPI

Umpire

AML

RAJA

CHAI

PaRSEC*

DARMA

GASNet-EX

Qthreads

BOLT

SICM

Legion

Kokkos (support)

QUO

Papyrus

Tools and
Technology (11)

PAPI

Program Database Toolkit

Search (random forests)

Siboka

C2C

Sonar

Dyninst Binary Tools

Gotcha

Caliper

TAU

HPCToolkit

Compilers
and Support (7)

OpenMP V & V

Flang/LLVM Fortran comp

LLVM

CHiLL autotuning comp

LLVM openMP comp

openarc

Kitsune

Data mgmt, I/O
Services, Checkpoint
restart (12)

Parallel netCDF

ADIOS

Darshan

UnifyCR

VeloC

IOSS

HXHIM

ROMIO

Mercury (Mochi suite)

HDF5

SCR

FAODEL

Ecosystem/E4S
at-large (12)

BEE

FSEFI

Kitten Lightweight Kernel

COOLR

NRM

ArgoContainers

Spack

MarFS

GUFI

Intel GEOPM

mpiFileUtils

TriBITS

Tools

PMR

Data and Vis

Ecosystems and delivery

Math Libraries Legend

Motivation: Properly chosen cross-team interactions will build relationships that support interoperability, usability,
sustainability, quality, and productivity within ECP ST.

Action Plan: Identify product groupings where coordination across development teams will improve usability and
practices, and foster community growth among teams that develop similar and complementary capabilities.

38

ECP is working towards a periodic, hierarchical release process

• In ECP, teams increasingly need to ensure that their libraries and

components work together

– Historically, HPC codes used very few dependencies

• Now, groups related SW products work together on small releases

of “Software Development Kits” - SDKs

• SDKs will be rolled into a larger, periodic release – E4S.

• Deployment at Facilities builds on SDKs and E4S

Develop

Package

Build

Test

Deploy

Math
Libraries

Develop

Package

Build

Test

Deploy

Data and
Visualization

Develop

Package

Build

Test

Deploy

Programming
Models

…

Build

TestDeploy

Integrate

E4S:
ECP-wide
software
release

https://e4s.io

39

xSDK: Primary delivery mechanism for ECP math libraries’
continual advancements toward predictive science

ECP Math
libraries

Performance
on new node
architectures

Extreme
strong

scalability

Advanced,
coupled

multiphysics,
multiscale

Optimization,
UQ, solvers,

discretizations

Interoperability,
complementarity:

xSDK

Improving library
quality,

sustainability,
interoperability

Next-generation
algorithms

Advances in data
structures for new

node
architectures

Toward
predictive
scientific

simulations

Increasing
performance,

portability,
productivity

xSDK release
1

xSDK release
2

xSDK release
n…..Timeline:

As motivated and validated by
the needs of ECP applications:

xSDK release 0.6.0
(Nov 2020)

hypre
PETSc/TAO
SuperLU
Trilinos
AMReX
ButterflyPACK
DTK
Ginkgo
heFFTe
libEnsemble
MAGMA
MFEM
Omega_h
PLASMA
PUMI
SLATE
Tasmanian
SUNDIALS
Strumpack
Alquimia
PFLOTRAN
deal.II
preCICE
PHIST
SLEPc

from the
broader
community

Ref: xSDK: Building an Ecosystem of Highly Efficient Math Libraries for Exascale, SIAM News, Jan 2021

https://sinews.siam.org/Details-Page/xsdk-building-an-ecosystem-of-highly-efficient-math-libraries-for-exascale

The Extreme-Scale
Scientific Software
Stack (E4S)

41

E4S: Extreme-scale Scientific Software Stack

• Curated, Spack based software distribution

• Spack binary build caches for bare-metal installs

– x86_64, ppc64le (IBM Power 9), and aarch64 (ARM64)

• Container images on DockerHub and E4S website of pre-built binaries of ECP ST products

• Base images and full featured containers (with GPU support)

• GitHub recipes for creating custom images from base images

• GitLab integration for building E4S images

• E4S validation test suite on GitHub

• E4S-cl container launcher tool for MPI substitution in applications using MPICH ABI

• E4S VirtualBox image with support for container runtimes

• Docker

• Singularity

• Shifter

• Charliecloud

• AWS and GCP images to deploy E4S
https://e4s.io

42

E4S Components

• E4S is a curated release of ECP ST products based on Spack [http://spack.io].

• E4S Spack cache to support bare-metal installs at facilities and custom container builds:

– x86_64, ppc64le, and aarch64

• Container images on DockerHub and E4S website of pre-built binaries of ECP ST products.

• Base images and full featured containers with support for GPUs.

• GitHub recipes for creating custom images from base images.

• e4s-cl for container launch and for replacing MPI in application with system MPI libraries.

• Validation test suite on GitHub provides automated build and run tests.

• Automates build process via GitLab Continuous Integration to ensure packages can be built.

• E4S Doc Portal aggregates and summarizes documentation and metadata by raking product repos.

• E4S VirtualBox image with support for Docker, Shifter, Singularity, and Charliecloud runtimes.

• AWS image to deploy E4S on EC2.

• GCP image to deploy E4S on GCP.

https://e4s.io

43

Core questions E4S is addressing

How can new ECP software
capabilities be effectively and

efficiently integrated and
sustained?

• ECP success requires
development, delivery and use
of new GPU capabilities in 70
products

• Requires coordination of
versioning, integration, testing,
debugging, interaction with
vendors and facilities

• Requires access to new
documentation

• Requires focus on high quality

How can E4S build upon,
leverage and extend existing

capabilities and activities?

• Using Spack for product
installation, leveraging growing
Spack capabilities

• Making E4S available via
containers, cloud platforms

• Providing integration pathways
to multiple destinations: from-
source, LLVM, vendor stacks,
facilities, etc

How can E4S become a
sustainable, open, collaborative
software ecosystem for HPC?

• Hierarchical, open architecture
to accept and manage
community contributions

• Defined processes for
community engagement within
DOE, with other US agencies,
industry, international partners

• Delivering the value
proposition of the ecosystem
vs each app managing its
dependencies

44

Extreme-scale Scientific Software Stack (E4S)

• E4S: HPC Software Ecosystem – a curated software portfolio

• A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

• Available from source, containers, cloud, binary caches

• Leverages and enhances SDK interoperability thrust

• Not a commercial product – an open resource for all

• Oct 2018: E4S 0.1 - 24 full, 24 partial release products

• Jan 2019: E4S 0.2 - 37 full, 10 partial release products

• Nov 2019: E4S 1.0 - 50 full, 5 partial release products

• Feb 2020: E4S 1.1 - 61 full release products

• Nov 2020: E4S 1.2 (aka, 20.10) - 67 full release products

• Feb 2021: E4S 21.02 - 67 full release, 4 partial release

• May 2021: E4S 21.05 - 76 full release products

https://e4s.io

Lead: Sameer Shende
(U Oregon)

Also include other products .e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://e4s.io/

45

21.05 Release: 76 Official Products + dependencies

mpich zfp

46

Delivering an open, hierarchical software ecosystem
More than a collection of individual products

E4S
Source: ECP E4S team; Non-ECP Products (all dependencies)

Delivery: spack install e4s; containers; CI Testing

SDKs
Source: SDK teams; Non-ECP teams (policy compliant, spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

ST
Products Source: ECP L4 teams; Non-ECP Developers; Standards Groups

Delivery: Apps directly; spack; vendor stack; facility stack

Levels of Integration Product Source and Delivery

• Group similar products

• Make interoperable

• Assure policy compliant

• Include external products

• Build all SDKs

• Build complete stack

• Assure core policies

• Build, integrate, test

• Standard workflow

• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

47

E4S: Better quality, documentation, testing, integration, delivery, building & use

https://e4s.io

Quality Commitment
Community policies, improvement

DocPortal
Single portal to all E4S product info

Portfolio testing
Especially leadership platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 1.2 – November

Build caches
10X build time improvement

Turnkey stack
A new user experience

https://e4s.io E4S Strategy Group
US agencies, industry, international

Delivering HPC software to facilities, vendors, agencies, industry, international partners in a brand-new way

https://e4s.io/

E4S Commitment to Quality
- Community Policies
- Practice Improvement

49

E4S Community Policies V1.0 Released

50

E4S Community Policies Version 1
A Commitment to Quality Improvement

• Will serve as membership criteria for E4S

– Membership is not required for inclusion in E4S

– Also includes forward-looking draft policies

• Purpose: enhance sustainability and interoperability

• Topics cover building, testing, documentation,
accessibility, error handling and more

• Multi-year effort led by SDK team

– Included representation from across ST

– Multiple rounds of feedback incorporated from ST
leadership and membership

• Modeled after xSDK Community Policies

• https://e4s-project.github.io/policies.html

https://e4s-project.github.io/policies.html

51

IDEAS-ECP team works with the ECP community to improve

developer productivity and software sustainability as key aspects of
increasing overall scientific productivity. https://ideas-productivity.org

Customize and curate
methodologies
● Target scientific software

productivity and sustainability

● Use workflow for best practices

content development

Incrementally and iteratively
improve software practices
● Determine high-priority topics for

improvement and track progress

● Productivity and Sustainability

Improvement Planning (PSIP)

Establish software communities
● Determine community policies to improve

software quality and compatibility

● Create Software Development Kits (SDKs)

to facilitate the combined use of

complementary libraries and tools

Engage in community outreach
● Broad community partnerships

● Collaboration with computing facilities

● Webinars, tutorials, events

● WhatIs and HowTo docs

● Better Scientific Software site (https://bssw.io)

1

2

3

4

https://bssw.io/

52

Productivity and Sustainability Improvement Planning (PSIP)

01 Summarize Current Project
Practices

• Write brief practices
summary document• High level description, a

few pages

02 Set Goals

• Identify practices ready
for improvement• Select those with near-

term payoff

03 Construct Progress
Tracking Card (PTC)

• Construct from PTC
catalog• Select only a few items

04 Record Current PTC Values

• Set baseline values for future
reference

05 Create Plan For Increasing PTC
values

• Define practice improvement
steps• Be specific, track issues

06 Execute Plan

• Increase PTC values by
improving selected
practices• Track issues progress

07 Assess Progress

• Track PTC values• Adjust strategy i f
needed

Productivity and Sustainability
Improvement Planning (PSIP)

Workflow

A lightweight iterative

workflow, where teams identify

their most urgent software

bottlenecks and track progress

to overcome them.

• Modernize processes for handling documentation

(PTC)

“The PSIP project had an immediate impact on our community.
With the GitHub move we see increasing amount of small but
very valuable contributions to make HDF5 code and
documentation better.” Elena Pourmal, Director of Engineering,
The HDF Group

https://bssw.io/blog_posts/recent-successes-with-psip-on-hdf5

https://bssw.io/psip

Snapshot of PSIP Progress Tracking Card (PTC)

Developers of HDF5 used PSIP to:

• Move HDF5 from a THG

managed Bitbucket

instance to GitHub (PTC)

• Define and adopt a set of

consistent coding
standards (PTC)

https://bssw-psip.github.io/ptc-catalog/catalog/THGReferenceManual.html
https://bssw.io/blog_posts/recent-successes-with-psip-on-hdf5
https://bssw.io/psip
https://bssw-psip.github.io/ptc-catalog/catalog/THGGitHubMigration.html
https://bssw-psip.github.io/ptc-catalog/catalog/THGCodingStandards.html

53

Better Scientific Software (BSSw) Fellowship Program

2018 - 2020

Goal: Foster and promote practices, processes, and tools to
improve developer productivity and software sustainability of
scientific codes.

Coming soon: announcement
of 2021 Fellows and HMs

54

Advancing Scientific Productivity through
Better Scientific Software:
Developer Productivity & Software Sustainability Report

https://exascaleproject.org/better-scientific-productivity-through-better-scientific-software-the-ideas-report

Disruptive changes in computer architectures and the
complexities of tackling new frontiers in extreme-scale
modeling, simulation, and analysis present daunting
challenges to software productivity and sustainability.

This report explains the IDEAS approach, outcomes,
and impact of work (in partnership with the ECP and
broader computational science community).

Target readers are all those who care about the quality
and integrity of scientific discoveries based on
simulation and analysis. While the difficulties of
extreme-scale computing intensify software challenges,
issues are relevant across all computing scales, given
universal increases in complexity and the need to
ensure the trustworthiness of computational results.

Preparing public report update to be released in Jan 2021: adding topics that
are completely new this year (Performance Portability Panel Series, Strategies
for Working Remotely Panel Series), topics not previously discussed in depth
(Collegeville Workshop Series on Scientific Software, tools for analysis), as
well as an update on Productivity and Sustainability Improvement Planning.
Info provided in internal ECP report, Sept 2020.

https://exascaleproject.org/better-scientific-productivity-through-better-scientific-software-the-ideas-report

E4S DocPortal

56

E4S DocPortal

• Single point of access

• All E4S products

• Summary Info

– Name

– Functional Area

– Description

– License

• Searchable

• Sortable

• Rendered daily from repos

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html

57

Goal: All E4S product documentation accessible from single portal on E4S.io
(working mock webpage below)

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html

Using E4S: From
source using Spack
and build caches

59

E4S Spack environment spack.yaml

• Bare-metal install
 % cat spack.yaml
 % spack -e . install

• Docker build:

60

E4S: Spack Build Cache at U. Oregon

• https://oaciss.uoregon.edu/e4s/inventory.html

• 53,000+ binaries

• S3 mirror

• No need to build

 from source code!

61

WDMApp: Speeding up bare-metal installs using E4S build cache

• https://wdmapp.readthedocs.io/en/latest/machines/rhea.html

E4S Spack build cache:

• WDMapp added E4S mirror
• Speedup: 10X

• Pantheon: 10X

• Another 10X via “smoother” installs
• Latest: ExaWind (Nalu-Wind)

• 6 minutes with build cache
• Up to 4 hours without

Using E4S with
containers

63

What are containers

A lightweight collection of executable software that encapsulates everything needed to run a single

specific task
Minus the OS kernel

Based on Linux only

Processes and all user-level software is isolated

Creates a portable* software ecosystem
Think chroot on steroids

Docker most common tool today
Available on all major platforms

Widely used in industry

Integrated container registry via Dockerhub

64

Hypervisors and Containers
Type 1 hypervisors insert layer below host OS

Type 2 hypervisors work as or within the host OS

Containers do not abstract hardware, instead provide “enhanced chroot” to create isolated

environment

Location of abstraction can have impact on performance

All enable custom software stacks on existing hardware

65

Download E4S 2021-02 GPU Container Image

https://e4s.io

66

E4S v2021-02 GPU Release for x86_64

• 67 ECP ST products

• Ubuntu v18.04 x86_64

• AI/ML package support
• TensorFlow 2.3.5

• PyTorch 1.8

• Horovod

• Support for GPUs
• AMD ROCm 3.8

• NVIDIA CUDA 10.2, 11
• Intel OneAPI 2021.1

• Kokkos with support for

AMD GPUs!

67

E4S v2021-02 GPU Release for x86_64

68

E4S Support for Singularity Container Runtime [Sylabs.io]

● wget http://tau.uoregon.edu/ecp.simg; singularity run ./ecp.simg
● singularity run ecp.simg

● Supports Intel OneAPI, CUDA, and ROCm

● spack find

http://tau.uoregon.edu/ecp.simg

69

E4S v2021-02 Release: GPU, ppc64le for Docker Containers

• 67 ECP Products

• Support for GPUs
• NVIDIA

(CUDA 10.2)

• ppc64le and x86_64

% docker pull

ecpe4s/ubuntu18.04-e4s-gpu

70

E4S v2021-02 GPU Release: 67 E4S Products (ppc64le)

• 67 ECP ST products

• Ubuntu v18.04 ppc64le

• Support for GPUs
• NVIDIA

71

E4S v2021-02 GPU Release: 67 E4S Products (ppc64le)

72

E4S Support for Singularity Container Runtime [Sylabs.io]

● wget http://oaciss.uoregon.edu/e4s/images/ubuntu18.04-e4s-gpu-ppc64le_1.2.simg

● singularity exec --nv ubuntu18.04-e4s-gpu-ppc64le_1.2.simg /bin/bash --rcfile /etc/bashrc

● spack find; module avail

73

E4S v2021-02 GPU Support

74

E4S: ppc64le Base Container Images

• Ubuntu 18.04
• RHEL/UBI 7.6
• Centos 7.6

• Hub.docker.com
• ecpe4s

75

Multi-platform E4S Docker Recipes

76

E4S: Multi-platform Reproducible Docker Recipes

https://e4s.io

E4S

• x86_64

• ppc64le

• aarch64

77

E4S VirtualBox Image

https://e4s.io

Container Runtimes

• Docker

• Shifter

• Singularity

• Charliecloud

78

e4s-cl: A tool to simplify the launch of MPI jobs in E4S containers

https://github.com/E4S-Project/e4s-cl

• E4S containers support replacement of MPI libraries using MPICH
ABI compatibility layer.

• Applications binaries built using E4S can be launched with Singularity
using MPI library substitution for efficient inter-node communications.

• e4s-cl is a new tool that simplifies the launch and MPI replacement.

• Usage:
1. e4s-cl init …

2. e4s-cl mpirun -np <> -hosts <> <command>

79

e4s-cl Container Launcher

https://e4s.io

E4S Continuous
Integration Testing

81

E4S Validation Test Suite

• git clone https://github.com/E4S-Project/testsuite.git

• Provides automated build and run tests

• Validate container environments and products

• New LLVM validation test suite for DOE LLVM

82

Reproducible Container Builds using E4S Base Images

● PMR SDK base image has Spack build cache mirror and

GPG key installed.

● Base image has GCC and MPICH configured for MPICH

ABI level replacement (with system MPI).

● Customized container build using binaries from E4S

Spack build cache for fast deployment.

● No need to rebuild packages from the source code.

● Same recipe for container and native bare-metal builds

with Spack!

83

E4S: GitLab Runner Images

• Dockerhub

• Bare-bones

• Multi-platfrom

• Build E4S

84

University of Oregon GitLab CI

E4S Builds:

•Ubuntu 18.04

•Ubuntu 20.04

•RHEL 7.6

•RHEL 8
•CentOS 7

•CentOS 8

Architectures:

ppc64le and x86_64

• https://gitlab.e4s.io

85

GitLab GPU Runners on Frank, U. Oregon

A100 NVIDIA GPU

DG1 Intel GPU

MI50 AMD GPU

86

Multi-stage E4S CI Build Pipeline on Cori, NERSC

87

ORNL GitLab Build Pipeline for E4S Spack Build Cache

• ppc64le (Ascent @ ORNL)

• Reproducible container builds

88

E4S CI Badges

E4S Community
Engagement

90

Opportunities via E4S

• E4S enables portfolio strategy for ASCR R&D software delivery:

– Facilities: Robust planning, delivery, integration and testing at Facilities

– Community: MPI Forum, C++, OpenMP, LLVM

– Vendor: Coordinated integration into vendor software stacks

– Users: Turnkey delivery of capabilities to DOE program offices, US agencies, industry, international partners

• E4S provides incentives and support for high-quality research software products

– Community policies: Drives quality by explicit expectations and clear view of gaps

– SDKs for community interaction: Build awareness and collaboration across independent teams

– Transparency: E4S DocPortal, build, test, integration shows quality (good or poor) of a product

• E4S provides direct path for software teams to reach users and other stakeholders

– Example: ArborX is brand new geometric search library

• Part of E4S, available at DocPortal, tested regularly on many platforms

• Installed anywhere E4S is installed, users can count on it being there

• Without E4S: ArborX would take years to become visible and available

– Availability and adoption timeline reduced from years (or never) to months

91

Joining E4S

• Process:

• Pre-req: Must make sense

• L0: E4S Spackified

• L1: Listed in DocPortal

• L2: Satisfy policies

Broader Community Engagement

The Second Extreme-scale Scientific Software Stack Forum (E4S Forum)
September 24th, 2020, Workshop at EuroMPI/USA'20

• E4S: The Extreme-scale Scientific Software Stack for Collaborative Open Source Software,
Michael Heroux, Sandia National Laboratories

• Title: Practical Performance Portability at CSCS, Ben Cumming, CSCS

• Title: An Overview of High Performance Computing and Computational Fluid Dynamics at NASA, Eric Nielsen, NASA Langley

• Towards An Integrated and Resource-Aware Software Stack for the EU Exascale Systems, Martin Schulz, Technische Universität
München

• Spack and E4S, Todd Gamblin, LLNL

• Rocks and Hard Places – Deploying E4S at Supercomputing Facilities, Ryan Adamson, Oak Ridge Leadership Computing Facility

• Advances in, and Opportunities for, LLVM for Exascale, Hal Finkel, Argonne National Laboratory

• Kokkos: Building an Open Source Community, Christian Trott, SNL

• Experiences in Designing, Developing, Packaging, and Deploying the MVAPICH2 Libraries in Spack,
Hari Subramoni, Ohio State University

• Software Needs for Frontera and the NSF Leadership Class Computing Facility –
the Extreme Software Stack at the Texas Advanced Computing Center, Dan Stanzione, TACC

• Building an effective ecosystem of math libraries for exascale, Ulrike Yang

• Towards Containerized HPC Applications at Exascale, Andrew Younge, Sandia

• E4S Overview and Demo, Sameer Shende, University of Oregon

• The Supercomputer “Fugaku” and Software, programming models and tools,
Mitsuhisa Sato, RIKEN Center for Computational Science (R-CCS), Japan

- Presenters from 11

institutions, 6 non-DOE
- 70 participants

- DOE Labs, NASA

- AMD
- HLRS, CSCS

E4S provides a natural

collaboration vehicle for

interacting within DOE, with

other US agencies, industry and

international partners

93

E4S summary

What E4S is
• Extensible, open architecture software ecosystem

accepting contributions from US and international teams.

• Framework for collaborative open-source product
integration for ECP & beyond, including AI and Quantum.

• Full collection if compatible software capabilities and

• Manifest of a la carte selectable software capabilities.

• Vehicle for delivering high-quality reusable software
products in collaboration with others.

• New entity in the HPC ecosystem enabling first-of-a-kind
relationships with Facilities, vendors, other DOE program
offices, other agencies, industry & international partners.

• Hierarchical software framework to enhance (via SDKs)
software interoperability and quality expectations.

• Conduit for future leading edge HPC software targeting
scalable computing platforms.

What E4S is not

• A closed system taking contributions only from DOE
software development teams.

• A monolithic, take-it-or-leave-it software behemoth.

• A commercial product.

• A simple packaging of existing software.

Looking Forward

95

Lessons learned from E4S/ECP ST to carry forward

• Deliver DOE reusable software as a portfolio

– E4S value is already more than the sum of its parts

– Community policies drive quality, membership

– DocPortal, testing, containerization, cloud, build caches, modules, etc., greatly improve access & usability

– Poor performing products are ID’ed, then improved or removed

• E4S is ready to extend to next-generation software and hardware needs

– AI/ML products already in portfolio, ready for any new products

– Quantum, FPGA, neuromorphic devices likely to be accelerators

• From a macro software architecture, similar to GPUs

• Software for these devices can and should be part of the same stack for holistic HPC environment

• DOE software as a portfolio is a first-class entity in the ecosystem

– E4S planning, executing, tracking, assessing is peer collaboration with Facilities, program offices, vendors, etc

– E4S can become a perennial asset for DOE/ASCR as part of its mission impact within and beyond DOE

96

E4S sustainability

• ECP has a robust tailored 413.3b project management infrastructure

• Transitioning & adapting this infrastructure is essential for post-ECP success

• Funding models, portfolio management, org structure are particularly critical

Challenges

• A sustainable software ecosystem for HPC software from DOE & broader community

• Payoff if done right: better, faster and cheaper – get all three

Opportunities

97

E4S Expansion – Base Scope & Gaps

Within base scope

Making a high-quality HPC product portfolio through tools, processes, and transparency

Community policies: Improve product quality upstream, shepherd membership growth

DocPortal: Provide easy access to product documentation

Portfolio testing: Protecte against regressions, prepare for new platforms

Curated collection: Maintain version compatibility across products

Turnkey stack via quarterly releases: Provide functionality via Spack, containers, clouds

Gaps not in base

Features that are a significant departure from core mission needs

Sustained support of new customers (without specific collaborative funding)

Activities related to commercial software enterprise

Ongoing support of a maintenance-only product (no longer funded for R&D)

Need: Business models for the gaps

98

Final points

• E4S is a curated software stack with quality improvement incentives, moving toward turnkey use

• With DOE program managers ECP is starting

– Software ecosystem sustainability planning

– E4S strategic plan (will include monthly townhalls)

• We believe

– E4S has reduced important gaps that limit usefulness of DOE software for industry

– But some gaps remain

• Next steps:

– Better characterize these gaps

– Explore models to further reduce and close gaps

– Plan and execute toward sustainability

99

Some opportunities for interactions

• E4S is ready for app teams to use now

– Curated, version-managed collection of many libraries & tools app teams use

– Turnkey builds, containers & cloud builds, Spack build cache: Can dramatically improve productivity

– Full E4S suite available for non-GPU platforms (CPU-based clusters)

– Many E4S product work on Nvidia GPUs, growing set of capabilities for Intel, AMD GPUs, some Arm/SVE

• Would love to engage new software teams

• Another opportunity:

– 2021 Collegeville Workshop on Scientific Software – Software Teams

– https://collegeville.github.io/CW21/

• Thank you!

https://collegeville.github.io/CW21/

100

ST Capability Assessment Report (CAR)

• Tiered discussion of ECP Software
Technology structure, strategy, status and
plans

• From high-level overview to details about
each team’s activities and next steps

•Produced about twice a year

• Includes gap analyses

•E4S scope updated for emerging needs

https://www.exascaleproject.org/wp-content/uploads/2021/01/ECP-ST-CAR-v2.5.pdf

https://www.exascaleproject.org/wp-content/uploads/2021/01/ECP-ST-CAR-v2.5.pdf

101

Thank you

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who are
passionately working toward next-generation computational science.

https://www.exascaleproject.org

https://www.exascaleproject.org/

	Slide 1: E4S: The Extreme-scale Scientific Software Stack for Collaborative Open Source Software
	Slide 2: Brief Intro to the Exascale Computing Project (ECP)
	Slide 3: ECP’s holistic approach uses co-design and integration to achieve exascale computing
	Slide 4: DOE HPC Roadmap to Exascale Systems
	Slide 5: Brief Intro to ECP Software Technology (ST) Focus Area
	Slide 6: ECP Software Technology (ST)
	Slide 7: ECP ST has six technical areas
	Slide 8: We work on products applications need now and into the future
	Slide 9: Progress toward Exascale readiness
	Slide 10: SLATE port to AMD and Intel platforms
	Slide 11: Kokkos: Support and AMD Functionality.
	Slide 12: FY21: FFT: Application-specific FFT optimizations and integration within Copa and ExaAM
	Slide 13: Document on Performance Evaluation of Solvers in hypre 2.20.0
	Slide 14: Key Product Development Takeaways
	Slide 15: Getting portable performance via E4S products
	Slide 16: Challenge: How can I port my code effectively and efficiently to diverse and emerging architectures?
	Slide 17: Writing your code for portable performance
	Slide 18: Using libraries for portable performance
	Slide 19: Addressing IO Bottlenecks
	Slide 20: The Growing Complexity of Scientific Application Software Stacks
	Slide 21: Challenges
	Slide 22: ECP apps (AD) are primary consumers of ST products
	Slide 23: Scientific software is becoming extremely complex
	Slide 24: Even proprietary codes are based on many open source libraries
	Slide 25: The Exascale Computing Project is building an entire ecosystem
	Slide 26: How to install software on a supercomputer
	Slide 27: What about modules?
	Slide 28: Spack Overview
	Slide 29: Spack
	Slide 30: Spack is a flexible package manager for HPC
	Slide 31: Spack provides the spec syntax to describe custom configurations
	Slide 32: `spack find` shows what is installed
	Slide 33: The Spack community is growing rapidly
	Slide 34: ECP SW Technology Software Architecture – SDKs
	Slide 35: ECP applications rely on ST products across all technical areas
	Slide 36: ECP applications require consistency across the software stack
	Slide 37: ECP ST SDKs will span all technology areas
	Slide 38: ECP is working towards a periodic, hierarchical release process
	Slide 39: xSDK: Primary delivery mechanism for ECP math libraries’ continual advancements toward predictive science
	Slide 40: The Extreme-Scale Scientific Software Stack (E4S)
	Slide 41: E4S: Extreme-scale Scientific Software Stack
	Slide 42: E4S Components
	Slide 43: Core questions E4S is addressing
	Slide 44: Extreme-scale Scientific Software Stack (E4S)
	Slide 45: 21.05 Release: 76 Official Products + dependencies
	Slide 46: Delivering an open, hierarchical software ecosystem More than a collection of individual products
	Slide 47: E4S: Better quality, documentation, testing, integration, delivery, building & use
	Slide 48: E4S Commitment to Quality - Community Policies - Practice Improvement
	Slide 49: E4S Community Policies V1.0 Released
	Slide 50: E4S Community Policies Version 1 A Commitment to Quality Improvement
	Slide 51: IDEAS-ECP team works with the ECP community to improve developer productivity and software sustainability as key aspects of increasing overall scientific productivity.
	Slide 52: Productivity and Sustainability Improvement Planning (PSIP)
	Slide 53: Better Scientific Software (BSSw) Fellowship Program
	Slide 54: Advancing Scientific Productivity through Better Scientific Software: Developer Productivity & Software Sustainability Report
	Slide 55: E4S DocPortal
	Slide 56: E4S DocPortal
	Slide 57: Goal: All E4S product documentation accessible from single portal on E4S.io (working mock webpage below)
	Slide 58: Using E4S: From source using Spack and build caches
	Slide 59: E4S Spack environment spack.yaml
	Slide 60: E4S: Spack Build Cache at U. Oregon
	Slide 61: WDMApp: Speeding up bare-metal installs using E4S build cache
	Slide 62: Using E4S with containers
	Slide 63: What are containers
	Slide 64: Hypervisors and Containers
	Slide 65: Download E4S 2021-02 GPU Container Image
	Slide 66: E4S v2021-02 GPU Release for x86_64
	Slide 67: E4S v2021-02 GPU Release for x86_64
	Slide 68: E4S Support for Singularity Container Runtime [Sylabs.io]
	Slide 69: E4S v2021-02 Release: GPU, ppc64le for Docker Containers
	Slide 70: E4S v2021-02 GPU Release: 67 E4S Products (ppc64le)
	Slide 71: E4S v2021-02 GPU Release: 67 E4S Products (ppc64le)
	Slide 72: E4S Support for Singularity Container Runtime [Sylabs.io]
	Slide 73: E4S v2021-02 GPU Support
	Slide 74: E4S: ppc64le Base Container Images
	Slide 75: Multi-platform E4S Docker Recipes
	Slide 76: E4S: Multi-platform Reproducible Docker Recipes
	Slide 77: E4S VirtualBox Image
	Slide 78: e4s-cl: A tool to simplify the launch of MPI jobs in E4S containers
	Slide 79: e4s-cl Container Launcher
	Slide 80: E4S Continuous Integration Testing
	Slide 81: E4S Validation Test Suite
	Slide 82: Reproducible Container Builds using E4S Base Images
	Slide 83: E4S: GitLab Runner Images
	Slide 84: University of Oregon GitLab CI
	Slide 85: GitLab GPU Runners on Frank, U. Oregon
	Slide 86: Multi-stage E4S CI Build Pipeline on Cori, NERSC
	Slide 87: ORNL GitLab Build Pipeline for E4S Spack Build Cache
	Slide 88: E4S CI Badges
	Slide 89: E4S Community Engagement
	Slide 90: Opportunities via E4S
	Slide 91: Joining E4S
	Slide 92: Broader Community Engagement The Second Extreme-scale Scientific Software Stack Forum (E4S Forum) September 24th, 2020, Workshop at EuroMPI/USA'20
	Slide 93: E4S summary
	Slide 94: Looking Forward
	Slide 95: Lessons learned from E4S/ECP ST to carry forward
	Slide 96: E4S sustainability
	Slide 97: E4S Expansion – Base Scope & Gaps
	Slide 98: Final points
	Slide 99: Some opportunities for interactions
	Slide 100: ST Capability Assessment Report (CAR)
	Slide 101: Thank you

