
Accelerating HPC Impact:
GPUs, Software Ecosystems, People, Trust

Michael A. Heroux, Sandia National Laboratories
Director of Software Technology

NASA Virtual Visit, April 7, 2022

2

Outline

• ECP, Briefly

• Establishing software ecosystems

• Building an HPC community for the future

• Developing software for GPU systems

• Building trust in computations

ECP in a Nutshell

4

ECP by the numbers

A seven-year, $1.8B R&D effort that launched in 2016

Six core DOE National Laboratories: Argonne, Lawrence
Berkeley, Lawrence Livermore, Oak Ridge, Sandia, Los Alamos

• Staff from most of the 17 DOE national laboratories take part
in the project

More than 80 top-notch R&D teams

Three technical focus areas: Hardware and Integration, Software
Technology, Application Development supported by a Project
Management Office

Hundreds of consequential milestones delivered on
schedule and within budget since project inception

7
YEARS
$1.8B

6
CORE DOE

LABS

3
FOCUS
AREAS

80+
R&D TEAMS

1000
RESEARCHERS

Takeway: ECP is a
big gnarly project!

5

Application Development (AD) Software Technology (ST) Hardware and Integration (HI)

Integrated delivery of ECP products
on targeted systems at leading DOE

HPC facilities
6 US HPC vendors

focused on exascale node and system
design; application integration and
software deployment to Facilities

Deliver expanded and vertically
integrated software stack to achieve
full potential of exascale computing

70 unique software products
spanning programming models and

run times,
math libraries,

data and visualization

Develop and enhance the predictive
capability of applications critical to

DOE
24 applications

National security, energy,
Earth systems, economic security,

materials, data
6 Co-Design Centers

Machine learning, graph analytics,
mesh refinement, PDE discretization,

particles, online data analytics

ECP’s holistic approach uses co-design and integration to
achieve exascale computing

Performant mission and science applications at scale

Aggressive
RD&D project

Mission apps; integrated
S/W stack

Deployment to DOE
HPC Facilities

Hardware
technology advances

6

Exascale Systems – Primary targets for ECP Software Teams

Exascale
Systems

ORNL
HPE/AMD

LLNL
HPE/AMD

ANL
Intel/HPE

Aurora

Takeway: ECP is a
big gnarly project!

ECP Software Technology Leadership Team

Rajeev Thakur, Programming Models and Runtimes (2.3.1)
Rajeev is a senior computer scientist at ANL and most recently led the ECP Software Technology focus area. His research interests are in parallel
programming models, runtime systems, communication libraries, and scalable parallel I/O. He has been involved in the development of open-source
software for large-scale HPC systems for over 20 years.

Jeff Vetter, Development Tools (2.3.2)
Jeff is a computer scientist at ORNL, where he leads the Future Technologies Group. He has been involved in research and development of
architectures and software for emerging technologies, such as heterogeneous computing and nonvolatile memory, for HPC for over 15 years.

Xaioye (Sherry) Li, Math Libraries (2.3.3)
Sherry is a senior scientist at Berkeley Lab. She has over 20 years of experience in high-performance numerical software, including development of
SuperLU and related linear algebra algorithms and software.

Jim Ahrens, Data and Visualization (2.3.4)
Jim is a senior research scientist at the Los Alamos National Laboratory (LANL) and an expert in data science at scale. He started and actively
contributes to many open-source data science packages including ParaView and Cinema.

Mike Heroux, Software Technology Director
Mike has been involved in scientific software R&D for 30 years. His first 10 were at Cray in the LIBSCI and scalable apps groups. At Sandia he
started the Trilinos and Mantevo projects, is author of the HPCG benchmark for TOP500, and leads productivity and sustainability efforts for DOE.

Lois Curfman McInnes, Software Technology Deputy Director
Lois is a senior computational scientist in the Mathematics and Computer Science Division of ANL. She has over 20 years of experience in HPC
numerical software, including development of PETSc and leadership of multi-institutional work toward sustainable scientific software ecosystems.

Kathryn Mohror, NNSA ST (2.3.6)
Kathryn is Group Leader for the CASC Data Analysis Group at LLNL. Her work focuses on I/O for extreme scale systems, scalable performance
analysis and tuning, fault tolerance, and parallel programming paradigms. She is a 2019 recipient of the DOE Early Career Award.

Todd Munson, Software Ecosystem and Delivery (2.3.5)
Todd is a computational scientist in the Math and Computer Science Division of ANL. He has nearly 20 years of experience in high-performance
numerical software, including development of PETSc/TAO and project management leadership in the ECP CODAR project.

7

8

ECP ST has six technical areas

Programming
Models &
Runtimes

•Enhance and get
ready for exascale the
widely used MPI and
OpenMP
programming models
(hybrid programming
models, deep memory
copies)

•Development of
performance
portability tools (e.g.,
Kokkos and Raja)

•Support alternate
models for potential
benefits and risk
mitigation: PGAS
(UPC++/GASNet)
,task-based models
(Legion, PaRSEC)

•Libraries for deep
memory hierarchy and
power management

10-8

10-4

100

104

 0 100 200 300 400 500 600 700 800 900

R
e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (662-bus: 662 x 662 with 2,474 nonzeros)

CG
CGS

BICGSTAB

Development
Tools

•Continued,
multifaceted
capabilities in
portable, open-
source LLVM
compiler ecosystem
to support expected
ECP architectures,
including support for
F18

•Performance
analysis tools that
accommodate new
architectures,
programming
models, e.g., PAPI,
Tau

Math Libraries
•Linear algebra,
iterative linear
solvers, direct linear
solvers, integrators
and nonlinear
solvers, optimization,
FFTs, etc

•Performance on new
node architectures;
extreme strong
scalability

•Advanced algorithms
for multi-physics,
multiscale simulation
and outer-loop
analysis

•Increasing quality,
interoperability,
complementarity of
math libraries

Data and
Visualization

• I/O via the HDF5
API

• Insightful,
memory-efficient
in-situ
visualization and
analysis – Data
reduction via
scientific data
compression

• Checkpoint
restart

Software
Ecosystem

•Develop features in
Spack necessary to
support all ST
products in E4S, and
the AD projects that
adopt it

•Development of
Spack stacks for
reproducible turnkey
deployment of large
collections of
software

•Optimization and
interoperability of
containers on HPC
systems

•Regular E4S
releases of the ST
software stack and
SDKs with regular
integration of new ST
products

NNSA ST
•Open source NNSA
Software projects

•Projects that have
both mission role
and open science
role

•Major technical
areas: New
programming
abstractions, math
libraries, data and
viz libraries

•Cover most ST
technology areas

•Subject to the same
planning, reporting
and review
processes

ECP ST Director: Mike Heroux
ECP ST Deputy Director: L.C. McInnes

Rajeev Thakur Jeff Vetter Sherry Li Jim Ahrens Todd Munson Kathryn MohrorArea
Leads:

9

ST L4 Leads

- WBS
- Name
- PIs
- PCs - Project
Coordinators

WBS WBS Name CAM/PI PC
2.3 Software Technology Heroux, Mike, McInnes, Lois
2.3.1 Programming Models & Runtimes Thakur, Rajeev
2.3.1.01 PMR SDK Shende, Sameer Shende, Sameer
2.3.1.07 Exascale MPI (MPICH) Guo, Yanfei Guo, Yanfei
2.3.1.08 Legion McCormick, Pat McCormick, Pat
2.3.1.09 PaRSEC Bosilca, George Carr, Earl
2.3.1.14 Pagoda: UPC++/GASNet for Lightweight Communication and Global Address Space Support Hargrove, Paul Hargrove, Paul
2.3.1.16 SICM Graham, Jonathan Turton, Terry
2.3.1.17 OMPI-X Bernholdt, David Grundhoffer, Alicia
2.3.1.18 RAJA/Kokkos Trott, Christian Robert Trujillo, Gabrielle
2.3.1.19 Argo: Low-level resource management for the OS and runtime Beckman, Pete Gupta, Rinku

2.3.2 Development Tools Vetter, Jeff
2.3.2.01 Development Tools Software Development Kit Miller, Barton Tim Haines
2.3.2.06 Exa-PAPI++: The Exascale Performance Application Programming Interface with Modern C++ Dongarra, Jack Jagode, Heike
2.3.2.08 Extending HPCToolkit to Measure and Analyze Code Performance on Exascale Platforms Mellor-Crummey, John Meng, Xiaozhu
2.3.2.10 PROTEAS-TUNE Vetter, Jeff Hornick, Mike
2.3.2.11 SOLLVE: Scaling OpenMP with LLVm for Exascale Chandrasekaran, Sunita Oryspayev, Dossay
2.3.2.12 FLANG McCormick, Pat Perry-Holby, Alexis

2.3.3 Mathematical Libraries Li, Sherry
2.3.3.01 Extreme-scale Scientific xSDK for ECP Yang, Ulrike Yang, Ulrike
2.3.3.06 Preparing PETSc/TAO for Exascale Munson, Todd Munson, Todd
2.3.3.07 STRUMPACK/SuperLU/FFTX: sparse direct solvers, preconditioners, and FFT libraries Li, Sherry Li, Sherry
2.3.3.12 Enabling Time Integrators for Exascale Through SUNDIALS/ Hypre Woodward, Carol Woodward, Carol
2.3.3.13 CLOVER: Computational Libraries Optimized Via Exascale Research Dongarra, Jack Carr, Earl
2.3.3.14 ALExa: Accelerated Libraries for Exascale/ForTrilinos Prokopenko, Andrey Grundhoffer, Alicia
2.3.3.15 Sake: Solvers and Kernels for Exascale Rajamanickam, Siva Trujillo, Gabrielle

2.3.4 Data and Visualization Ahrens, James
2.3.4.01 Data and Visualization Software Development Kit Atkins, Chuck Bagha, Neelam
2.3.4.09 ADIOS Framework for Scientific Data on Exascale Systems Klasky, Scott Hornick, Mike
2.3.4.10 DataLib: Data Libraries and Services Enabling Exascale Science Ross, Rob Ross, Rob
2.3.4.13 ECP/VTK-m Moreland, Kenneth Moreland, Kenneth
2.3.4.14 VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart/Sz Cappello, Franck Ehling, Scott
2.3.4.15 ExaIO - Delivering Efficient Parallel I/O on Exascale Computing Systems with HDF5 and Unify Byna, Suren Bagha, Neelam
2.3.4.16 ALPINE: Algorithms and Infrastructure for In Situ Visualization and Analysis/ZFP Ahrens, James Turton, Terry

2.3.5 Software Ecosystem and Delivery Munson, Todd
2.3.5.01 Software Ecosystem and Delivery Software Development Kit Willenbring, James M Willenbring, James M
2.3.5.09 SW Packaging Technologies Gamblin, Todd Gamblin, Todd
2.3.5.10 ExaWorks Laney, Dan Laney, Dan

2.3.6 NNSA ST Mohror, Kathryn
2.3.6.01 LANL ATDM Mike Lang Vandenbusch, Tanya Marie
2.3.6.02 LLNL ATDM Becky Springmeyer Gamblin, Todd
2.3.6.03 SNL ATDM Jim Stewart Trujillo, Gabrielle

ECP ST Stats

- 250 staff
- 70 products
- 35 L4 subprojects
- 30 universities
- 9 DOE labs
- 6 technical areas
- 1 of 3 ECP focus

areas

9

10

We work on products applications need now and into the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage

Viz/Data Analysis ParaView-related product development, node concurrency

Key themes:
• Focus: GPU node architectures and advanced memory & storage technologies
• Create: New high-concurrency, latency tolerant algorithms
• Develop: New portable (Nvidia, Intel, AMD GPUs) software product
• Enable: Access and use via standard APIs
Software categories:
• Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
• Robust emerging products: Address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products: Enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

Establishing Software
Ecosystems

The Growing
Complexity of Scientific
Application Software
Stacks

13

Challenges

• As our software gets more complex, it is getting harder to
install tools and libraries correctly in an integrated and
interoperable software stack.

14

ECP apps (AD) are primary consumers of ST products
Dependency Database

View by AD consumers

View by ST producers

STHI

AD

ECP Internal
Dependencies

https://dx.doi.org/10.1038/s43588-021-00033-y

https://dx.doi.org/10.1038/s43588-021-00033-y

15

Scientific software is becoming extremely
complex

r-rminer

r

r-adabag

r-mass

r-lattice

r-nnet

r-rpart

r-cubist

r-e1071

r-glmnet

r-kernlab

r-kknn

r-mda

r-party

r-plotrix

r-pls

r-randomforest

r-xgboost

bzip2

cairo

freetype

zlib

glib

ncurses

pcre readline

curl

icu4c

jdk
libjpeg-turbo

libtiff

pango

tcltk

fontconfig

pkgconf

libpng
pixman

font-util

gperf

libxml2

util-macros

xz

gettext

libffi

perl

python

tar

gdbm

openssl

sqlite
cmake

nasm

gobject-introspection

harfbuzz

bison

flex

sed

m4 libsigsegv

help2man

libx11 inputproto

kbproto

libxcb

xproto

xextproto

xtrans
libpthread-stubs

libxau

libxdmcp

xcb-proto

r-caret

r-mlbench

r-car

r-nlme

r-foreach

r-ggplot2
r-plyr

r-reshape2

r-modelmetrics

r-mgcv

r-pbkrtest

r-quantreg

r-matrix

r-lme4

r-minqa

r-rcpp

r-nloptr

r-rcppeigen

r-testthat

r-crayon

r-digest

r-magrittr

r-praise

r-r6

r-matrixmodels

r-sparsem

r-codetools

r-iterators

r-gtable

r-lazyeval

r-scales

r-tibble

r-stringr

r-stringi

r-dichromat

r-labeling

r-munsell

r-rcolorbrewer

r-viridislite

r-colorspace

r-assertthat

r-rlang

r-class

r-igraph

gmp

r-irlba

r-pkgconfig autoconf

automake

libtool

r-coin

r-modeltools
r-mvtnorm

r-sandwich

r-zoo

r-survival

r-strucchange

r-multcomp r-th-data

r-data-table

R Miner: R Data Mining Library

dealii

adol-c

arpack-ng

cmake

zlib

openblas

openmpi

assimp
boost

gmsh oce

intel-tbb

gsl

hdf5

metis

muparser

nanoflann

netcdfnetcdf-cxx

netlib-scalapack

p4est

petsc

slepc

suite-sparse

sundials

trilinos

autoconf

m4

automake

libtool

perl

libsigsegv

gdbm

readline

ncurses

pkgconf

openssl

hwloc libxml2
xz

bzip2

gmp

netgen

tetgen

hypre

parmetis

python

superlu-dist
sqlite

glm

matio

mumps

dealii: C++ Finite Element Library

nalu

cmake

openmpi

trilinos

yaml-cpp
ncurses

openssl

pkgconf

zlib

hwloc libxml2 xz

boost

glm

hdf5

matio

metis

mumps

netlib-scalapack

openblas

netcdf

parallel-netcdf

parmetis

suite-sparse

superlu

bzip2

m4 libsigsegv

Nalu: Generalized Unstructured Massively Parallel Low Mach Flow

16

• Half of this DAG is external (blue); more than half of it is open source

• Nearly all of it needs to be built specially for HPC to get the best performance

Even proprietary codes are based on many open source libraries

ARES

tcl

tkscipy

python

cmake

hpdf

opclient

boost

zlib

numpy

bzip2

LAPACK

gsl

HDF5

gperftools papi

GA

bdivxml

sgeos_xmlScallop

rng perflib memusage timers

SiloSAMRAI

HYPRE

matprop

overlink qd

LEOS

MSlibLaser

CRETIN

tdf

Cheetah DSD

Teton

Nuclear

ASCLaser

MPI

ncurses

sqlite readline openssl BLAS

Physics Utility Math External

Types of Packages

17

The Exascale Computing Project is building an entire ecosystem

• Every application has its own stack of dependencies.
• Developers, users, and facilities dedicate (many) FTEs to building & porting.
• Often trade reuse and usability for performance.

70+ software packagesx
7+ target architectures/platforms

Xeon Power AMD Xe
NVIDIA ARM Laptops?

x

8+ compilers
Intel GCC Clang Flang
XL Fujitsu Cray NAG

x

= up to ~3.2M combinations!

25+ applications

x
11+ Programming Models

OpenMPI MPICH MVAPICH OpenMP CUDA
OpenACC HIP Legion DPC++ RAJA Kokkos

2-3 versions of each package +
external dependencies

x

We must make it easier to rely on others’ software!

18

How to install software on a supercomputer

c
o
n
f
i
g
u
r
e

m
a
k
e

F
i
g
h
t

w
i
t
h

c
o
m
p
i
l
e
r
.
.
.

m
a
k
e

T
w
e
a
k

c
o
n
f
i
g
u
r
e

a
r
g
s
.
.
.

m
a
k
e

i
n
s
t
a
l
l

m
a
k
e

c
o
n
f
i
g
u
r
e

c
o
n
f
i
g
u
r
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

c
m
a
k
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

1. Download all 16
tarballs you
need

2. Start building!

3. Run code
4. Segfault!?
5. Start

over…

19

A Sampler of Products

• No two project alike

• Some personality driven

• Some community driven

• Small, medium, large

20

Takeaways from product sampler
• Wide range of products and teams: libs, tools, small personality-driven, large community-driven

• Varied user base and maturity: widely used, new, emerging

• Variety of destinations: direct-to-user, facilities, community stacks, vendors, facilities, combo of these

• Wide range of dev practices and workflows from informal to formal

• Wide range of tools: GitHub, GitLab, Doxygen, Readthedocs, CMake, autotools, etc.

• Question at this point might (should?) be:
– Why are you trying to make a portfolio from this eclectic assortment of products?

• Answer:
– Each product team charged with challenging tasks:

• Provide capabilities for next-generation leadership platforms
• Address increasing software quality expectations
• While independently developed, product compatibility and complementarity improvements matter

– Working together on these frontiers is better than going alone

21

• The ECP software ecosystem is truly a complex system, not just complicated

• Plan, execute, track and assess. Repeat

• Challenges are emergent: technical, sociological, and cognitive

Takeaways from software complexity

Responding to
complexity: Software
Ecosystem via
Platforms

Software Platforms: “Working in Public” Nadia Eghbal

• Platforms in the software world are digital environments that
intend to improve the value, reduce the cost, and accelerate the
progress of the people and teams who use them

• Platforms can provide tools, workflows, frameworks, and cultures
that provide a (net) gain for those who engage

• Eghbal Platforms:

Eghbal, Nadia. Working in Public: The Making and Maintenance of Open Source Software (p. 60). Stripe Press. Kindle Edition.

24

About Platforms and ECP

• The ECP is commissioned to provide new scientific software capabilities on the frontier of
algorithms, software and hardware

• The ECP provides platforms to foster collaboration and cooperation as we head into the frontier:
– E4S: a comprehensive portfolio of ECP-sponsored products and dependencies
– SDKs: Domain-specific collaborative and aggregate product development of similar capabilities

25

Delivering an open, hierarchical software ecosystem
More than a collection of individual products

E4S
Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

SDKs
Source: SDK teams; Non-ECP teams (policy compliant, spackified)
Delivery: Apps directly; spack install sdk; future: vendor/facility

ST
Products Source: ECP L4 teams; Non-ECP Developers; Standards Groups

Delivery: Apps directly; spack; vendor stack; facility stack

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Assure core policies
• Build, integrate, test

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

26

Spack

• E4S uses the Spack package manager for software delivery
• Spack provides the ability to specify versions of software packages that are and are not

interoperable.
• Spack is a build layer for not only E4S software, but also a large collection of software tools

and libraries outside of ECP ST.
• Spack supports achieving and maintaining interoperability between ST software packages.
• https://spack.io

https://spack.io/

27

Wind Farm
(ExaWind)

Cosmology
(ExaSky)

National Security
(MAPP)

Fusion Energy
(WDMApp)ECP Applications:

Tools

Prog Models & Runtimes

Data and Viz
Ecosystems and Delivery

Math Libraries Legend

Selected ECP Software Technologies

… and moreSubsurface
Flow

Ecosystem: E4S at large

Spack

… and more

F N W

Programming Models
and Runtimes

MPI

Umpire

RAJA

CHAI

Kokkos

… and more

C F N WSC F N WS

F W

N S

N S

N S

Tools and
Technology

PAPI

Flux

Caliper

TAU

HPCToolkit

Compilers
and Support

LLVM

OpenMP

… and more

C F N WS

C F N W

C F N S

N S

C F S

F W

N

Math Libraries (xSDK)

ArborX

SUNDIALS

PETSc/TAO

SuperLU

MFEM

Trilinos

hypre

FFT

BLAS, LAPACK

STRUMPACK

… and more

N WS

F N S

F

WSF

WSF

N S

C W

C W

F W

N

zfp

ALPINE

Cinema

VTK-m

SZ

SPOT

Visualization Analysis
and Reduction

… and more

C N WS

C N

C F N WS

C

F N

N

Data Mgmt, I/O,
Checkpoint Restart

PnetCDF

ADIOS

UnifyFS

VeloC

HDF5

SCR

MPI-IO

… and more
C

N

F

C F N WS

W

F W

N

C F N S W

ECP applications require consistency across the software stack
24 apps,
6 co-design
centers

Shown are 36 ST products (used or being
considered by the 5 apps above)

ST overall has 70 unique software products
used by 24 apps and 6 co-design centers

ECP apps rely on multiple software technologies; some software products contribute to multiple distinctly developed
components of a multiphysics app (such as fusion energy modeling) that must run within a single executable.

See E4S.io
for more
ST products

AID
AML
BEE
Darshan
DTK
Dyninst
FleCSI
ForTriliinios
GASNet
Ginkgo
Kokkoskernels
Legion
libEnsemble
MarFS
NRM
OpenACC
Papyrus
PaRSEC
PDT
PowerStack
ScaLAPACK
SCR
SICM
SLATE
SWIG
Tasmanian
Umap
UPC++

28

Extreme-scale Scientific Software Stack (E4S)
• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: Feb 2022: E4S 22.02 – 100 full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to SW quality

DocPortal
Single portal to all
E4S product info

Portfolio testing
Especially leadership

platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 22.2 – February

Build caches
10X build time
improvement

Turnkey stack
A new user experience https://e4s.io Post-ECP Strategy

LSSw, ASCR Task Force

https://e4s.io/
https://spack.io/
https://e4s.io/

29

ECP ST Planning Process: Hierarchical, three-phase, cyclical

FY20–23 Baseline Plan
High level Definitions

• Q2 FY19 start
• FY20 Base plan
• FY21–23 planning

packages

Baseline

FY Refine Baseline Plan
As Needed

Basic activity definitions

• 6 months prior to FY
• 4–6 P6 Activities/year
• Each activity:

• % annual budget
• Baseline start/end
• High level description

Annual Refinement

Detailed Plan
Complete activity definitions

• 8 weeks prior to start
• High-fidelity description
• Execution strategy
• Completion criteria
• Personnel details

Per Activity

Two-level
Review Process

Changes to Cost, Scope,
and Schedule

Minor Major

Lightweight
Review in

Jira, L3 and
L2 leads

Change
Control
Board

Review, ECP
leadership

Variance Recorded in Jira
Proceed with Execution

30

KPP-3: Focus on capability integration

• Capability: Any significant product functionality, including existing features adapted to the pre-
exascale and exascale environments, that can be integrated into a client environment
– Approximately 1 FTE-year cost
– Single capability intended to be broadly useful

• Capability Integration: Complete, sustainable integration of a significant product capability into a
client environment in a pre-exascale environment (tentative score) and in an exascale environment
(confirmed score)
– Integration typically includes availability via E4S
– 1 point for a capability integrated into a particular client environment for a particular platform
– Example: New PETSc solver integrated into WDMApp on Frontier – 1 point

31

ECP ST Lifecycle summary
Create Annual

Planning
Package

• Each product has its own
planning packages

• Defined for all FYs

Refine upcoming
FY plan

• Complete 6 months prior to FY
• 4 or more P6 activities per product

Refine upcoming
P6 activity

• Complete 8 weeks prior to activity start
• Include all details

Develop capabilities and track
progress via tailored EVM

Integrate into
product

• Full testing, documentation, etc.
• Direct access for some users

Integrate
into SDK

• Satisfy SDK community policies
• Direct access for some users

Integrate
into E4S

• Satisfy E4S community policies
• Full ecosystem with high value

Deliver to
users

• From source (spack)
• Containers, cloud

Managed by P6 Activity Process

Measured by KPP-3 Process

32

E4S and SDKs as platforms are providing tremendous value
Activity SDKs E4S
Planning Transparent and collaborative requirements, analysis and design,

delivery – better plans, less effort, improved complementarity
Campaign-based portfolio planning coordinated with Facilities, vendors,
community ecosystem, non-DOE partners

Implementation Leverage shared knowledge, infrastructure, best practices ID and assist product teams with cross-cutting issues

Cultivating
Community

Within a specific technical domain: Portability layers, LLVM
coordination, sparse solvers, etc.

Across delivery and deployment, with software teams, facilities’ staff,
with non-DOE users in industry, US agencies

Resolving issues,
sharing solutions

Performance bottlenecks and tricks, coordinated packaging and use
of substrate, e.g., Desul for RAJA and Kokkos

Build system bugs and enhancements, protocols for triage, tracking &
resolution, leverage across & beyond DOE

Improving quality Shared practice improvement, domain-specific quality policies,
reduced incidental differences and redundancies, per-commit CI
testing of portfolio

Portfolio-wide quality policies with assessment process and quality
improvement efforts, documentation portal, portfolio testing on many
platforms not available to developers. Address supply chain needs

Path-finding Collaborative exploration and development of leading-edge tools
and processes

Exploration and development of leading-edge packaging and distribution
tools and workflows that provide capabilities and guidance for others

Training Collaborative content creation and curation, coordinated training
events for domain users, deep, problem-focused solutions using
multiple products

Portfolio installation and use, set up of build caches, turnkey and
portable installations, container and cloud instances

Developer
experience

Increased community interaction, increased overhead (some devs
question value), improved R&D exploration, e.g., variable precision

Low-cost product visibility via doc portal, wide distribution via E4S as
from-source/pre-installed/container environment

User experience Improve multi-product use, better APIs through improved design,
easier understanding of what to use when

Rapid access to latest stable feature sets, installation on almost any
HPC system, leadership to laptop

Scientific
Software R&D

Shared knowledge of new algorithmic advances, licensing, build
tools, and more

Programmatic cultivation of scientific software R&D not possible at
smaller scales

Community
development

Attractive and collaborative community that attracts junior members
to join, establishes multi-institutional friendships & careers

Programmatic cultivation of community through outreach and funded
opportunities that expand the sustainable membership possibilities

The SDK and E4S platforms provide compelling value for modest cost in ways that become more important going forward

LSC Disclaimer

• The following descriptions are notional
• We are actively engaging stakeholders to evolve our approach
• Goal: Be ready to execute a plan for post-ECP software efforts

34

ECP’s Evolving Vision for Software Sustainability
A Leadership Software Center (LSC) with core efforts + “sprint-like” campaigns

A component of our response to a Feb 2021 IPR Recommendation: Identify long
term options for supporting and evolving the software ecosystem developed and
used throughout the ECP project.

LSC
Core

Initiate

Refine

Sustain

Starting point: ECP’s Extreme-Scale Scientific
Software Stack, E4S, a Spack-based distribution of
software tested for interoperability and portability to
multiple architectures (e4s.io)

LSC-1
FY 2024-26

LSC-2
FY 2027-29

LSC-3
FY 2030-32

Next phase core SW ü ü ü

Establish AI/ML SDK ü

Next phase AI/ML ü ü

Scope Edge SDK ü

Establish Edge SDK ü

Next phase Edge ü

Scope Quantum SDK ü

Establish Quantum SDK ü

Contingency ü ü ü

Leadership
Software
Campaigns

LSC Execution
Approach

Plan, Execute, Track, Assess Lifecycle

• All activities governed by phased development process
• Executed as “campaigns”: LSC-1, LSC-2, …
• Tailored agile approach
• Hierarchical approach:

- Multi-year baseline as campaign
- Refine annually
- Add fidelity per milestone at “last responsible moment”

Change Management Process:

• Changes from campaign base plan managed by a process
• Any changes to cost, scope and schedule
• Explicit review process determined by degree of change
• Change control process assures lightweight transparency
• Objective: Always do most important work at any time

Capability
Integration
Strategy

DOE software products have four primary
integration targets:
• Vendors: Specific HPC enhancements, integrated into

system vendor stacks
• Community SW: C++, Fortran, LLVM
• Facilities: Tuned open-source SW for key platforms
• Direct to apps: Application teams download and build
• Note: Some products are available via 2 – 3 of the above

targets

LSC goals:

• Establish and ensure quality standards for LSC product
development and delivery

• Assure that funded projects develop and deliver to one
or more integration targets

• Track and assess integration status of new capabilities

Building an HPC
Community for the
Future

38

xSDK: Primary delivery mechanism for ECP math libraries’
continual advancements toward predictive science

ECP Math
libraries

Performance
on new node
architectures

Extreme
strong

scalability

Advanced,
coupled

multiphysics,
multiscale

Optimization,
UQ, solvers,

discretizations

Interoperability,
complementarity:

xSDK

Improving library
quality,

sustainability,
interoperability

Next-generation
algorithms

Advances in data
structures for new

node
architectures

Toward
predictive
scientific

simulations

Increasing
performance,

portability,
productivity

xSDK release
1

xSDK release
2

xSDK release
n…..Timeline:

As motivated and validated by
the needs of ECP applications:

xSDK release 0.6.0
(Nov 2020)

hypre
PETSc/TAO
SuperLU
Trilinos
AMReX
ButterflyPACK
DTK
Ginkgo
heFFTe
libEnsemble
MAGMA
MFEM
Omega_h
PLASMA
PUMI
SLATE
Tasmanian
SUNDIALS
Strumpack
Alquimia
PFLOTRAN
deal.II
preCICE
PHIST
SLEPc

from the
broader
community

Ref: xSDK: Building an Ecosystem of Highly Efficient Math Libraries for Exascale, SIAM News, Jan 2021

Ulrike Yang, PI

https://sinews.siam.org/Details-Page/xsdk-building-an-ecosystem-of-highly-efficient-math-libraries-for-exascale

39

xSDK4ECP: Project strategy

Scope:
• Development of xSDK community policies for improved software quality

and combined build infrastructure

• Coordinated releases of complete xSDK with testing, documentation,
packaging and deployment

• Development of new interoperability layers between xSDK members

• Outreach to ECP (and general) community through surveys, summary
reports, tutorials, presentations, articles, etc

• Subprojects: adaptive execution (LBNL, UCB), code quality (ANL, U of
Oregon)

• Multiprecision effort (lead: H. Anzt), see 2nd part of review

Project Team (FY20)
Aaron Fisher
Ahmad Abdelfattah
Asim YarKhan
Barry Smith
Boyana Norris
Carol Woodward
Cody Balos
Damien Lebrun-Grandie
Daniel Arndt
Daniel Osei-Kuffuor
Erik Boman
Erin Carson
Gerald Ragghianti
Hengrui Lu
Hartwig Anzt
Ichi Yamazaki
Jack Dongarra
Jamie Finney
Jennifer Loe
Jim Demmel
Jim Willenbring
Keita Teranishi
Lois Curfman McInnes
Mark C. Miller
Mark Gates
Mike Heroux
Miroslav Stoyanov

Goals: Create a value-added aggregation of ECP mathematics libraries, to increase the combined usability,
standardization and interoperability of these libraries, as needed to support large-scale multiphysics and
multiscale problems.

Natalie Beams
Nick Higham
Osni Marques
Piotr Luszczek
Robert Falgout
Samuel Knight
Sarah Osborn
Satish Balay
Scott Kruger
Sherry Li
Siva Rajamanickam
Stan Tomov
Sri Pranesh
Stephen Hudson
Stuart Slattery
Terry Cojean
Thomas Grützmacher
Tobias Ribizel
Tomas Gergelits
Tzanio Kolev
Ulrike Meier Yang
Veselin Dobrev
Viktor Reshniak
Wenjun Ge
Yang Liu
Younghyun Cho
…

40

An SDK Maturity Model or the Benefits of Coop-etition
Scenario: Two Product Teams in the Same SDK (e.g., math libs SDK – xSDK)

Level 0:
Their software
approach is nuts!

Level 1:
They seem to
have some good
ideas…

Level 2:
Let’s do some
joint planning
and tutorials

Level 3:
Let’s explore
multi-precision
algorithms for
GPUs together

41

Takeaways from SDKs

• Establish coop-etition:
– Lower-cost comparison of products, increased incentives for improvement
– Encourages SDK participation: learn from each other, be in the know

• Lead to community growth:
– Humanizes the other teams
– Exposes opportunities to share strengths

• Retain autonomy of SDK member teams
– Each team makes its own informed decisions
– Better decisions from shared study of new ideas

• Challenges
– Coordination has overhead
– Poor habits can spill over (but so can good ones)

• Bottom line: SDKs as we define them:
– Are platforms to support open, collaborative scientific discovery across teams
– Make sharing and cooperation, which are fundamental to science, easier to realize

42

Multilayered collaboration across the ECP community
• Ref: Scaling productivity and innovation on the path to exascale with a “team of teams” approach,

E. Raybourn et al, 2019

ECP: A “team of teams”
An aggressive research, development and deployment project, focused on delivery of mission-
critical applications, an integrated software stack, and exascale hardware technology advances

Networked teams, at scale. Multidisciplinary expertise, such as:

Stakeholders

Research software
engineers (RSEs)

Applied mathematicians

Computer scientists
Applications scientists

Data scientists and
engineers Cognitive and

social scientists

Computational scientists
and engineers

Project coordinators

And more …

Performance
engineers

Stakeholders

Research software
engineers (RSEs) Applied mathematicians

Computer scientists

Data scientists and
engineers

Cognitive and
social scientists

Computational scientists
and engineers

And more …

Performance engineers
Project

coordinators

Applications scientists

https://doi.org/10.1007/978-3-030-22338-0_33

43

Advancing scientific productivity through better scientific software
Science through computing is only as good as the software that produces it.

https://ideas-productivity.org

Customize and curate
methodologies
● Target scientific software

productivity and sustainability
● Use workflow for best practices

content development

Incrementally and iteratively
improve software practices
● Determine high-priority topics for

improvement and track progress
● Productivity and Sustainability

Improvement Planning (PSIP)

Establish software communities
● Determine community policies to improve

software quality and compatibility
● Create Software Development Kits (SDKs)

to facilitate the combined use of
complementary libraries and tools

Engage in community outreach
● Broad community partnerships
● Collaboration with computing facilities
● Webinars, tutorials, events
● WhatIs and HowTo docs
● Better Scientific Software site (https://bssw.io)

1

2

3

4

https://bssw.io/

44

IDEAS-ECP team https://www.ideas-productivity.org

Ref: Research Software Science: A Scientific Approach to Understanding and
Improving How We Develop and Use Software for Research, M. Heroux, 2019

https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research

45

Productivity and sustainability improvement planning:
Recent successes with PSIP on HDF5

https://bssw.io/psip

HDF5 improvement goals - achieved by using PSIP progress tracking cards (PTC)

• Modernize processes for handling documentation (PTC)
• Move HDF5 from a THG managed Bitbucket instance to GitHub (PTC)
• Define and adopt a set of consistent coding standards (PTC)

“The PSIP project had an immediate impact on our community.
With the GitHub move we see increasing amounts of small but
very valuable contributions to make HDF5 code and
documentation better.” – Elena Pourmal, Director of
Engineering, The HDF Group

Refs:
• Using the PSIP Toolkit to Achieve Your Goals – A Case Study at The HDF

Group, E. Pourmal, R. Milewicz, E. Gonsiorowski, webinar, June 2020
[recording / slides]

• Recent successes with PSIP on HDF5, M. Miller, E. Pourmal, E. Gonsiorowski,
Nov 2020

• Automating Software Productivity Planning: Lightweight Tools for Upgrading
Team Practices, E. Raybourn et al, the International Conference on Software
Engineering Research & Practice, SERP'21, July 2021

https://bssw-psip.github.io/ptc-catalog/catalog/THGReferenceManual.html
https://bssw-psip.github.io/ptc-catalog/catalog/THGGitHubMigration.html
https://bssw-psip.github.io/ptc-catalog/catalog/THGCodingStandards.html
https://www.youtube.com/watch?v=kPUYKuiJQZs
http://ideas-productivity.org/wordpress/wp-content/uploads/2021/06/hpcbp053-psip4hdf.pdf
https://bssw.io/blog_posts/recent-successes-with-psip-on-hdf5

46

IDEAS Outreach
Lead: David Bernholdt

Better Scientific Software Tutorials
• Covering issues of developer productivity, software

sustainability and reliability, with a special focus on the
challenges of complex, large-scale HPC

– software design, agile methodologies, Git workflows,
reproducibility, software testing, continuous integration
testing, refactoring, and more

• https://bssw-tutorial.github.io

• Recent venues
– Supercomputing (2016-2021)
– SEAS’s Improving Scientific Software (2021)
– ECP Annual Meeting (2017-2021)
– ISC (2017-2019, 2021), ATPESC (2016-2021)

Webinar Series: Best Practices for HPC
Software Developers (HPC-BP)
• Covering topics in software development and HPC
• https://ideas-productivity.org/events/hpc-best-practices-webinars
• Lead: Osni Marques
• Presented by the community to the community
• Monthly series, since May 2016 (offered live and archived)

– Best Practices for HPC Software Developers: The First Five Years of
the Webinar Series, O. Marques and D. Bernholdt, Oct 2021

Mailing list to follow IDEAS-led events (webinars,
panels, BOFs, etc.): http://eepurl.com/cQCyJ5

BSSw Tutorial
@ SC21, Nov 15

https://bssw-tutorial.github.io/
https://ideas-productivity.org/events/hpc-best-practices-webinars/
https://bssw.io/blog_posts/best-practices-for-hpc-software-developers-the-first-five-years-of-the-webinar-series
http://eepurl.com/cQCyJ5
https://sc21.supercomputing.org/presentation/?id=tut139&sess=sess214

47

IDEAS Outreach
Lead: David Bernholdt

Technical Meetings and
Birds of a Feather Sessions
• Creating opportunities to talk about software

development, productivity, and sustainability
• https://ideas-productivity.org/events
• Minisymposia

– SIAM CSE, SIAM PP (2015-2022), PASC (2018, 2019)
– Ref: A Look at Software-Focused Topics at SIAM CSE21,

March 2021

• Thematic poster sessions
– SIAM CSE (2017, 2019, 2021)

• BOF sessions
– Software Engineering and Reuse in Modeling, Simulation

and Data Analytics for Science and Engineering
• Supercomputing (2015-2021), ISC (2019)

• Collegeville Workshop Series on Scientific
Software,

– Ref: Software Team Experiences and Challenges,
K. Beattie et al, Oct 2021

• Exploring strategies for working remotely, with emphasis on how
HPC teams can be effective and efficient in long-term hybrid settings

• https://www.exascaleproject.org/strategies-for-working-remotely
• Lead: Elaine Raybourn
• Quarterly series, since April 2020 (offered live and archived)
• Ref: Why We Need Strategies for Working Remotely: The ECP

Panel Series, E. Raybourn, SC20 State of the Practice, Nov 2020

Panel Series:
Strategies for Working Remotely

Panel Series: Performance Portability & ECP
• Lead: Anshu Dubey (2020 series). Refs:

– Performance Portability in the Exascale Computing Project: Exploration
Through a Panel Series, A. Dubey et al, IEEE CiSE, Sept 2021

– SIAM CSE21 minisymposium: https://doi.org/10.6084/m9.figshare.c.5321441

– Minisymposium accepted for ECCOMAS 2022

https://ideas-productivity.org/events/
https://bssw.io/blog_posts/a-look-at-software-focused-topics-at-siam-cse21
https://collegeville.github.io/CW21/
https://bssw.io/blog_posts/software-team-experiences-and-challenges-a-report-from-day-2-of-the-2021-collegeville-workshop-on-scientific-software
https://www.exascaleproject.org/strategies-for-working-remotely
https://sc20.supercomputing.org/proceedings/sotp/sotp_files/sotp114s2-file2.pdf
https://dx.doi.org/10.1109/MCSE.2021.3098231
https://doi.org/10.6084/m9.figshare.c.5321441

48

BSSw Fellowship: Meet the Fellows https://bssw.io/fellowship

2020 BSSw Fellows: Projects and Perspectives
BSSw Fellowship
Coordinator: Hai Ah Nam

https://bssw.io/blog_posts/2020-bssw-fellows-projects-and-perspectives

49

• Unit Testing C++ with Catch, M. Dewing
• The Art of Writing Scientific Software in an Academic

Environment, H. Anzt
• FLASH5 Refactoring and PSIP, A. Dubey & J. O’Neal
• Software Sustainability in the Molecular Sciences,

T. Windus & T.D. Crawford
• Working Effectively with Legacy Code, R. Bartlett
• Building Community through Software Policies,

P. Luszczek & U.M. Yang
• Continuous Technology Refreshment: An Introduction

Using Recent Tech Refresh Experiences on VisIt,
M. Miller & H. Auten

What is BSSw?

Community-based hub for sharing information on practices,
techniques, and tools to improve developer productivity and
software sustainability for computational science.

We want and need contributions from the community …
Join us!

• Types of content
– Informative articles
– Curated links

• Highlight other web-based content

– Events
– WhatIs, HowTo docs
– Blog articles

So your code will see the future. https://bssw.io

• The Contributions of Scientific Sofware to
Scientific Discovery, K. Keahey & R. Gupta

• Software Team Experiences and Challenges,
C. Balos, J. Brown. G. Chourdakis et al.

• Performance Portability and the ECP Project,
A. Dubey

• Testing Non-Deterministic Research Software,
N. Eisty,

• What Does This Line Do? The Challenge of
Writing a Well-Documented Code, M. Stoyanov

Recent articles

Receive our email digest

BSSw.io
editor in chief:
Rinku Gupta

https://bssw.io/items/unit-testing-c-with-catch/
https://bssw.io/blog_posts/the-art-of-writing-scientific-software-in-an-academic-environment
https://bssw.io/blog_posts/flash5-refactoring-and-psip
https://bssw.io/blog_posts/software-sustainability-in-the-molecular-sciences
https://bssw.io/items/working-effectively-with-legacy-code/
https://bssw.io/blog_posts/building-community-through-software-policies
https://bssw.io/blog_posts/continuous-technology-refreshment-an-introduction-using-recent-tech-refresh-experiences-on-visit
https://bssw.io/blog_posts/the-contributions-of-scientific-software-to-scientific-discovery
https://bssw.io/blog_posts/software-team-experiences-and-challenges-a-report-from-day-1-of-the-2021-collegeville-workshop-on-scientific-software
https://bssw.io/blog_posts/testing-non-deterministic-research-software
https://bssw.io/blog_posts/what-does-this-line-do-the-challenge-of-writing-a-well-documented-code

50

Leadership Scientific Software (defn)
• Libraries, tools and environments that

– Contribute to scientific discovery and insight in
• New and emerging computing environments

• Push the boundary of feasibility
– Enabling

• Larger scale, higher fidelity and greater integration of
– Advanced computing ecosystems

• Does “leadership” limit the scope of discussion?
– Yes, we are directly focused on non-commodity environments, but:

• Still use laptops, desktops, CPU clusters as part of our development efforts
• Many of our tools and libraries need to be available everywhere
• Non-commodity focus does not mean we work only on non-commodity systems

• Focus is on efforts that include co-design of
– Computing platforms: Modeling & simulation, AI/ML, edge: at scale
– System software: Collaborative co-design with vendors
– Science-specific tools and libraries: What we are developing for users

E4S
~80 pkgs

E4S
dependencies

~400 pkgs

Spack Community
Ecosystem

~6,000 pkgs
Figure from Todd Gamblin

51

Leadership Scientific Software Community Discussions

https://lssw.io

• LSSw Town Hall Meetings (ongoing)
• 3rd Thursday each month, 3 – 4:30 pm Eastern US time
• 100+ attendees at each meeting, sessions recorded

• Town Hall Topics
• Meeting 1: Overview of the ECP Software Technology Focus Area
• Meeting 2: Progress, impediments, priorities & gaps in LSSw panel
• Meeting 3: Expanding the LSSw User Communities - Panel
• Meeting 4: Expanding the LSSw Developer Communities – Panel
• Meeting 5: Retrospective on Previous Meetings – Discussion
• Meeting 6: Other HPC Software Ecosystems – Panel
• Meeting 7: Expanding the Scope of What is Reusable – Panel

https://lssw.io/

52

LSSw Town Halls – Forum for exploring future, building community
Topic: Progress, impediments, priorities and gaps in leadership scientific software

• Ann Almgren, Berkeley Lab, PI of the AMReX project
• Todd Gamblin, Lawrence Livermore National Lab, PI of the Spack project
• Paul Kent, Oak Ridge National Lab, PI of the QMCPACK project
• J. David Moulton, Los Alamos National Lab, PI of the IDEAS Watersheds project
• Todd Munson, Argonne National Lab, PI of the PETSc/TAO project

Themes:
• Improved SW quality and availability accelerates scientific discovery
• Maintaining SW workforce is essential through visible, sustained career paths
• Engaging, growing, & sustaining a user base is essential for viable products
• Regular testing & integration are essential for providing trusted SW components
• Complexity is growing in many dimensions, coordinated SW efforts can mitigate it

Topic: US Agency Use of DOE HPC Software

• Shawn Brown, Pittsburgh Supercomputing Center
• Jeff Durachta, NOAA
• Alice Koniges, University of Hawai’i Data Science Center
• Piyush Mehrotra, NASA
• Andrew Wissink, US Army

Themes:
• Open-source community-based software products are attractive resources
• Heterogeneous platforms (GPUs) represent a significant challenge for apps
• Lack of stable programming environments, transition costs are blockers for GPUs
• Spack is used or is on the radar for all panelist communities
• DOE math libs, perf tools, portability layers & E4S used or on the radar of most

Topic: Expanding Leadership Scientific Software Developer and User Communities

• Deb Agarwal, Berkeley Lab
• Anshu Dubey, Argonne National Laboratory
• Bill Hart, Sandia National Labs
• Addi Malviya-Thakur, Oak Ridge National Laboratory
• Katherine Riley, Argonne National Laboratory

Themes:
• All panelists support the expanded definition of leadership to include their domain
• New leadership definition enables holistic strategy for quality scientific SW
• The represented communities have much in common with HPC communities
• In future, HPC and these communities have emerging collaboration opportunities
• SW practices & tools from these communities can help HPC teams improve

Topic: Scientific Software Ecosystems

• Anita Carleton, CMU, SEI
• Theresa Windus, Iowa State, MolSSI
• Lorraine Hwang, UC Davis, CIG
• Elizabeth Sexton-Kennedy, Fermi Lab, HSF
• Andy Terrel, Xometry, NumFocus

Themes:
• Ecosystem membership criteria tend to be informal for most ecosystems.
• A product is welcome if it has a user community, funding & fits in the ecosystem
• Most ecosystems have a lean budget and live on soft funding
• A major contribution of ecosystems is training: developers, user, leaders
• With some exceptions, software quality criteria are not explicitly stated

53

LSSw Meeting 7: Thursday, April 21, 2022, 3 - 4:30 pm ET

Topic: Expanding the Scope of What is Reusable: A panel discussion

• Description: General-purpose reusable libraries and tools for scientific applications have been very successful. Math, I/O, viz and portable
programming libraries and tools have been particularly valuable. Other, more application-specific, libraries and tools have also had some
success, for example, the Co-Design Centers sponsored by the Exascale Computing Project, but have received less attention and can be
more challenging to sustain. This month we have panelists to help explore expanding the kinds of functionality that can be encapsulated for
reuse:
– Angela Herring, LANL

– Slaven Peles, ORNL

– Andrew Salinger, SNL

– Andrew Siegel, ANL

– One more, TBD

• In opening remarks, panelists briefly address the following questions from their perspective:
– Do you think there is value in designing, implementing, and delivering application-specific libraries, tools, and environments as reusable components?

– What has worked and not worked well with past efforts in this area?

– What are some near-term opportunities to componentize in your application area?

– How could this kind of software collection be adapted and sustained?

• Why attend: To discuss the feasibility, strategies, and opportunities for expanding the scope of functionality that can be encoded in
reusable components, libraries, and tools to better include more application-specific functionality.

https://lssw.io

https://lssw.io/

54

Key observation: We are scientists,
problem solvers. Use science to
address our challenges!
Now: Improved SW environments
(Jupyter), integration of software
specialists as team members, data
mining of repos
Next: Research Software Science
- Use scientific method to

understand, improve development
& use of software for research.

- Incorporate cognitive & social
sciences.

Social & Cognitive
Specialists

+ Data & SW
Specialists

+ Math & CS
Specialists

Domain Science
Specialists

Te
am

 S
ki

lls
 O

ve
r T

im
e

Expanding Software Team Skills: Research Software Science (RSS)

55

New DOE Area of Exploration: Research Software Science (RSS)

Workshop on Research Software Science
• Software is an increasingly important component in the

pursuit of scientific discovery.

• Both its development and use are essential activities for
many scientific teams.

• At the same time, very little scientific study has been
conducted to understand, characterize, and improve the
development and use of software for science.

• Research Software Science (RSS) is a frontier.

• RSS: Using the scientific method to understand and
improve how software is developed and used for research

• 126 whitepaper submissions (at same time as RFI!)
• Whitepapers at: https://www.orau.gov/SSSDU2021
• 150 registrants (maxed), 100 registered observers
• 150 – 170 active participants across three days
• Goal: Leverage new skills applied to scientific SW

https://www.orau.gov/SSSDU2021

56

Re
se
ar
ch

Types of software development workflows (not necessarily people)
De

ve
lo
p

De
pl
oy

Research Staff Work Profile

Development Staff Work Profile

Deployment Staff Work ProfileIT Job

RSE Job

RSS* Job

*RSS – Research Software Scientist (new job type)

57

Why A Software Science Focus now: The “No CS” Scenario
Scenario: Suppose our research centers had no formally trained computer scientists and CS work had
to be done by people who learned it on their own, or just happened to study a bit of CS as part of their
other formal training. This situation is undesirable in three ways:

1. We have non-experts doing CS work, making them less available in their expertise
2. CS work takes a long time to complete compared to other work
3. We get suboptimal results and pay high ongoing maintenance cost

Replace ”CS” with “Software” in this scenario and the situation describes scientific software today

Why focus on software science now:

• The role of software has become central to much of our work and the knowledge base is too
sophisticated to rely only on non-experts

• Scientific software success depends on producing high-quality, sustainable software products
• Investing in software as a first-class pursuit improves the whole scientific ecosystem

58

Applying Social & Cognitive Science to Software Teams
• Reed Milewicz – Emerging research software

scientist

• Elaine Raybourn – Sandia social scientist

• New scientific tools to study and improve
developer productivity, software sustainability

• Correlation: Happiness and connectedness

Talk to Me: A Case Study on Coordinating

Expertise in Large-Scale Scientific Software

Projects
Reed Milewicz and Elaine M. Raybourn

Sandia National Laboratories, 1611 Innovation Pkwy SE, Albuquerque, New Mexico 87123

Abstract—
Large-scale collaborative scientific software projects

require m
ore knowledge than

any
one person

typically
possesses.

This m
akes

coordination
and

com
m

unication
of knowledge

and

expertise
a

key
factor

in
creating

and
safeguarding

software

quality,
without

which
we

cannot
have

sustainable
software.

However, as
researchers

attem
pt

to
scale

up
the

production
of

software,
they

are
confronted

by
problem

s
of

awareness
and

understanding. This
presents

an
opportunity

to
develop

better

practices
and

tools
that

directly
address

these
challenges.

To

that end, we conducted
a

case study
of developers of the Trilinos

project. W
e

surveyed
the

software
developm

ent
challenges

ad-

dressed
and

show
how

those
problem

s are
connected

with
what

they
know

and
how

they
com

m
unicate. Based

on
these

data, we

provide
a

series
of practicable

recom
m

endations, and
outline

a

path
forward

for
future

research.I. INTRODUCTION

Large-scale scientific software projects are among the most

knowledge-intensive undertakings, consisting of extremely di-

verse communities of practice and inquiry. For example, a

climate modeling application can consist of numerous codes

for modeling the atmosphere and the ocean, each of which is

written by a distinct research team. The effective realization of

such an application in an high-performance computing (HPC)

environment relies heavily upon people with backgrounds in

computational science and software engineering. The orches-

tration of that talent demands disciplined project management

and communication with stakeholders. Thousands of person-

years of labor are poured into the software development over

the course of decades.

Given the long lifespan and criticality of these projects,

sustainability has been a focal point of research in recent

years. By sustainability, we mean the ability of the software

to continue to function as intended in the future, which is

necessary for the reliability and reproducibility of research [1].

Sustainability is a multi-faceted challenge that encompasses

both social and technical aspects of software development.

In this work, we focus on the social aspect: the creation,

communication, and use of knowledge integral to the scien-

tific software development process. Large scientific software

projects require diverse forms of expertise, bringing together

Sandia National Laboratories is a multimission laboratory managed and

operated by National Technology & Engineering Solutions of Sandia, LLC,

a wholly owned subsidiary of Honeywell International Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under

contract de-na0003525.

people of different backgrounds and perspectives; to have

success, there must be close, effective interaction among those

parties [2]. Unfortunately, as we attempt to scale up these

projects, we are confronted by barriers – logistical, technical,

and cultural – that make it hard for people to share and apply

what they know. These challenges increase both the cost and

difficulty of software development and maintenance which

ultimately threatens sustainability.

From a software engineering perspective, more work is

needed to create better tools and methodologies to manage

and maintain that software development knowledge. However,

as Dennehy and Conboy observe, the culture and context

of a software project are “critical determinants of software

development success” and that “a method, practice, or tool

cannot be studied in isolation” [3]. For these reasons, we offer

a survey and study of knowledge management practices within

the Trilinos project, a keystone scientific software library at

Sandia National Laboratories [4]. In order to identify targets

for intervention, we model how knowledge is created and,

shared and its relationship to common software development

challenges.A. Motivating Example

Robust public investment into next-generation supercom-

puters is vital to the scientific enterprise. At the same time,

the enormous sums of money that must be spent to construct

and maintain these tools make it incumbent on their users to

be accountable to the taxpayers. For this reason, government

agencies stipulate rigorous requirements that must be met both

by the machine and the software that it runs; a supercomputer

must provide sufficient capabilities and the software must be

able to fully utilize them. In the acceptance testing phase of

supercomputer acquisition and software utility, participating

research organizations put forward representative codes to be

run on a novel architecture, and code performance is then

compared against the capabilities advertised by the vendor.

In the past year, the government requirements were tested

when an well-respected application powered by Trilinos strug-

gled to scale beyond 2 17
Message Passing Interface (MPI)

processes during an acceptance phase, resulting in a nearly

30% drop in performance on the target architecture. Al-

though all other applications passed the acceptance test and

the contract was completed successfully, the issue flagged a

potential “time bomb” for numerous applications and had to

ar
Xi

v:
18

09
.0

63
17

v1
 [

cs
.S

E]
 1

7
Se

p
20

18

Source: https://arxiv.org/pdf/1809.06317.pdf

New Professional Role: Research Software Scientist

59

Building Community Takeaways

• The design, construction and use of software for science is a multi-faceted endeavor

• Community building is essential:
– IDEAS – training, incremental improvement planning
– SDKs – accelerate design space exploration, create coop-etition
– RSEs – national and international recognition for an important & previously unacknowledged community
– BSSw – Portal & fellowships
– LSSw – Platform for exploring next-gen software ecosystems and communities
– RSS – Leveraging science for scientific software

Developing software for
GPU systems

61

We work on products applications need now and into the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage

Viz/Data Analysis ParaView-related product development, node concurrency

Key themes:
• Focus: GPU node architectures and advanced memory & storage technologies
• Create: New high-concurrency, latency tolerant algorithms
• Develop: New portable (Nvidia, Intel, AMD GPUs) software product
• Enable: Access and use via standard APIs
Software categories:
• Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
• Robust emerging products: Address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products: Enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

62

Exascale Systems – Primary targets for ECP Software Teams

Exascale
Systems

ORNL
HPE/AMD

LLNL
HPE/AMD

ANL
Intel/HPE

Aurora

Takeway: ECP is a
big gnarly project!

63

Heterogeneous accelerated-node computing
Accelerated node computing: Designing, implementing, delivering, & deploying advanced
agile software that effectively exploits heterogeneous node hardware

• Execute on the largest systems … AND on today and tomorrow’s laptops, desktops, clusters, …

• We view accelerators as any compute hardware specifically designed to accelerate certain mathematical
operations (typically with floating point numbers) that are typical outcomes of popular and commonly used
algorithms. We often use the term GPUs synonymously with accelerators.

Diagram credit:
Andrew Siegel

Text credit: Doug Kothe

Ref: A Gentle Introduction to GPU Programming, Michele Rosso and Andrew Myers, May 2021

https://bssw.io/blog_posts/a-gentle-introduction-to-gpu-programming

64

Kokkos/RAJA

•Two distinct products: Kokkos and RAJA
– Both originate in NNSA
– RAJAs main funding/usage in NNSA
– Kokkos gets half its funding from NNSA, but >70% of users outside of NNSA

•Worked on some shared low level capabilities
– Atomics: reported last year on the development, Kokkos now replaces internal

atomic operation implementation with that stand alone implementation
– Tools: Kokkos-Tools interface was orthogonalized from Kokkos Core

Programming model, RAJA is looking at using that

65

• Ecosystem for portable and performant parallel programming (focus: on-node parallelism)
– Expanding solution for common needs of modern science/engineering codes

• Kokkos Core: C++ Programming Model for Performance Portability
– Goal: Write algorithms once, run everywhere (almost) optimally
– Implemented as a template library on top of CUDA, OpenMP, HIP, SYCL, …
– Aligns with developments in the C++ standard

• Kokkos Kernels: Numerical libraries with interfaces to vendor kernels
– Goal: Deliver high performance kernels that are portable
– Optimized implementations for sparse/dense linear algebra and graph kernels

• Open-Source Software: https://github.com/kokkos
• Production use on all major HPC systems by dozens of teams: Trinity, Summit, Sierra, Fugaku, ….
• Many users at a wide range of institutions:

What is Kokkos?

https://github.com/kokkos

66

Kokkos Core Team

• Kokkos Core works as an integrated multi-lab project
– Developers from SNL, ORNL, ANL, LBL working as integrated team

• Labs leading backend work for machines at their centers

• Sandia contributed < 50% of all code changes in 2020/21

• Shared development
• Common knowledge base
• More impact = more vendor influence
• Full support for machines of NNSA and

OOS Labs
• Frontier/El Capitan similar requirements

• Used by LANL + SNL ATDM
• Most SNL ASC apps using

GPUs do so via Kokkos

• 18 ECP Critical dependencies
• Many open science apps use Kokkos
• >700 Kokkos Slack users

• Only 30% of from NNSA
• 40% growth in the last 12

months

SYNERGY

67

ECP users of Kokkos

•Extensively used across ECP projects
– Apps: ExaWind, EXAALT, WDMApp, ExaAM, LatticeQCD, E3SM-MMF, SNL & LANL ATDM

apps
– Codesign: ExaGraph, CoPA
– Libraries & tools: ALExa (ArborX and DTK), Kokkos Kernels, Trilinos, FleCSI

68

Kokkos Kernels Pre-Exascale Results

• Performance Results on Spock (Frontier early-access system)
– Performance of native SpMV implementation in Kokkos Kernels

against vendor TPLs (MKL, ArmPL, cuSPARSE
and rocSPARSE) on four architectures demonstrate good portability.

– Kokkos Kernels implementations strive to extract best performance
on each architecture but also allow direct calls to vendor TPLs when
possible or needed providing users with good baseline performance
for most common linear algebra kernels.

– Note that the results in figure to the right are subject to change
depending on the matrix used for comparison, here two matrices
representative of finite element/difference discretization were used

Kokkos Kernels is starting to generate results on pre-exascale systems

69

Kokkos Participation in ISO C++ Standards Committee

• mdspan got LEWG (working group in charge of library design review) approval for C++23
– Still needs wording review approval

• mdspan will replace guts of Kokkos View for managing data layouts

• Strong support from vendors

• C++ will finally have multi dimensional arrays like Fortran!
– But much better: incorporates all the customization points from Kokkos
– Layouts, Memory Access Traits, Can also be used for memory space typesafety

• Proposal: https://wg21.link/P0009 Implementation: https://github.com/kokkos/mdspan

MDSPAN

std::linalg
• Full BLAS for C++ but with mixed precision and flexible data layouts via mdspan

• Missed the deadline for C++23 due to limited committee review time, very likely for C++26

• Vendors are co-authors – collaborating with some on reference implementation

https://wg21.link/P0009

New algorithms
highlights – mixed
precision
The “coopetition” model:

Step 1: Collaborative design space exploration

Step 2: Adaptation and implementation in each library

71

The opportunity: Low-precision arithmetic is fast (and dangerous)
• We currently witness

– the integration of low precision special function units into HPC hardware (NVIDIA Tensor Core, AMD Matrix Engine, etc.),
– a widening gap between compute power and memory bandwidth,
– and the increasing adoption of low precision floating point formats (fp16, bf16, etc.).

• … the US Exascale Computing Project decided for the aggressive step of building a
multiprecision focus effort to take on the challenge of designing and
engineering novel algorithms exploiting the compute power available in low
precision and adjusting the communication format to the application specific needs.

Mark Gates (UTK)

Nov 2009 Top500:
• Jaguar #1 system
• 1.75 petaflops/s
• FP64 (not FP16)

72

Step 1: Concurrent exploration of the algorithm and software space

• In cross-laboratory expert teams, we focus on:
– Mixed precision dense direct solvers (MAGMA and SLATE);
– Mixed precision sparse direct solvers (SuperLU);
– Mixed precision multigrid (on a theoretical level and in hypre);

– Mixed precision FFT (heFFTE);
– Mixed precision preconditioning (Ginkgo, Trilinos);
– Separating the arithmetic precision from the memory precision (Ginkgo);
– Mixed precision Krylov solvers (theoretical analysis, Ginkgo, Trilinos);

• Mixed precision algorithms acknowledge and boost the GPU usage
– Algorithm development primarily focuses on GPU hardware (Summit, Frontier);
– Latest evaluations on NVIDIA A100 (Perlmutter), AMD MI100 (Spock), Intel Gen9 GPU

• Integrating mixed precision technology as production-ready implementation into
ECP software products allows for the smooth integration into ECP applications.

73

Step 2: Incorporate lessons learned into library ecosystem

For library interoperability and mixed precision usage:

• PETSc develops an abstraction layer to device solvers (vendor libraries, Kokkos Kernels, etc.)
that allows flexible composition of Krylov solves in mixed-precision;

• hypre already supports the compilation in different precisions and work now focuses on
compiling multiple precisions at a time to compose algorithms out of routines running in
different precision formats;

• Ginkgo makes the “memory accessor” integration-ready for other software libraries;

• Kokkos and KokkosKernels implements support for compiling in IEEE754 half precision;

• SLATE contains mixed precision algorithms and templates the working precision; and

• MAGMA compiles in different precisions (z,c,d,s).

Status of early-access
system experience

Excellent progress toward Exascale readiness and a lot
more to do

75

EAS Experience Highlights
• 30 of 35 Review presentations specifically addressed Spock porting experiences. The other five:

– PAPI – Fully engaged in AMD and Intel device preparation, just didn’t mention Spock directly
– SICM – Focused on low-level issues on local hardware
– Packaging – Working on Summit, Perlmutter, containers for EAS are not as urgent
– Flang – OpenMP target offload not available
– Legion –Working on Nvidia (Summit) because of collaborations

• Kokkos and RAJA portability layers are the focus heavy vendor optimization and collaboration
– Kokkos has 18 critical dependencies – largest count for non-vendor product
– RAJA – 4 ECP critical dependencies and foundation for LLNL portability

• MPICH (the source for Exascale vendor MPI products) is also under heavy development
– Shared HPE/Cray Slack channel, weekly dev calls with vendor partners
– Numerous GPU features under development and optimization

• Less work on Intel right now, but critical layers are fully engaged as possible

• Math libraries represent largest collection of performance-sensitive products in ST
– Lots of progress in the past year…

76

January 2022 ECP ST Math Libraries Accelerator Support Status

Package NVIDIA GPU AMD GPU Intel GPU

ArborX support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)

DTK support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)
Ginkgo support (CUDA) support (HIP) support (DPC++)

heFFTe support (CUDA) support (HIP) support (DPC++)

hypre support (CUDA, RAJA, Kokkos) support (HIP) in progress (DPC++)
KokkosKernels support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)

libEnsemble supports applications running on GPUs N/A N/A
MAGMA support (CUDA) support (HIP) planned

MFEM support (CUDA) support (HIP) support (DPC++)
PETSc/TAO support (CUDA | Kokkos) support (HIP | Kokkos) in progress (DPC++ | Kokkos-SYCL)

SLATE support (CUDA) support (HIP) in progress (DPC++)

STRUMPACK support (CUDA) support (HIP) in progress (SYCL, oneAPI)
Sundials support (CUDA, RAJA) support (HIP, RAJA) support (SYCL, oneAPI, RAJA)

SuperLU support (CUDA) support (HIP) in progress (DPC++, oneAPI)
Tasmanian support (CUDA) support (HIP) support (DPC++), but not in spack

Trilinos support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)

• All product teams are working across all three GPU architectures

• KPP-3 threshold efforts target Frontier, reason for further progress on AMD GPUs, relative to Intel

77

Performance portability
• Portability strategy:

– Strategy 1: Isolate performance-impacting code to select kernels, write own CUDA, HIP, SYCL
– Strategy 2: Product uses Kokkos and RAJA as primary portability layers
– Blend 1 & 2: Provide both
– Notes:

• No ST products use OpenMP directly for GPU portability but
• Kokkos and RAJA have OpenMP backends as an option

Package NVIDIA GPU AMD GPU Intel GPU
ArborX support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)
DTK support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)
Ginkgo support (CUDA) support (HIP) support (DPC++)
heFFTe support (CUDA) support (HIP) support (DPC++)
hypre support (CUDA, RAJA, Kokkos) support (HIP) in progress (DPC++)
libEnsemble supports apps running on GPUs N/A N/A
MAGMA support (CUDA) support (HIP) planned
MFEM support (CUDA) support (HIP) support (DPC++)
PETSc support (CUDA | Kokkos) support (HIP | Kokkos) in progress (DPC++ | Kokkos-SYCL)
SLATE support (CUDA) support (HIP) in progress (DPC++)
STRUMPACK support (CUDA) support (HIP) in progress (SYCL, oneAPI)
Sundials support (CUDA, RAJA) support (HIP, RAJA) support (SYCL, oneAPI, RAJA)
SuperLU support (CUDA) support (HIP) in progress (DPC++, oneAPI)
Tasmanian support (CUDA) support (HIP) support (DPC++), but not in spack
Trilinos support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)

78

GPU Efforts Summary

• One legacy of ECP & E4S will be a SW stack that is portable across Nvidia, AMD, and Intel GPUS

• Porting to modern GPUs requires almost everything to be done on the GPUs

• Two+hybrid portability models are used:
– Use portability layers: Kokkos, RAJA or (eventually) OpenMP w target offload (OpenACC?)
– Isolate & and custom write: Isolate perf-portable kernels and write your own CUDA, HIP, SYCL backend
– Hybrid: Use portability layers, customize key kernels only

• Explore low-precision arithmetic: Substantial benefit (and risks)

• Rely more on third-party reusable libraries and tools.

Building Trust in
Computations

80

Extreme-scale Scientific Software Stack (E4S)
• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: Nov 2021: E4S 21.11 – 91 full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to SW quality

DocPortal
Single portal to all
E4S product info

Portfolio testing
Especially leadership

platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 22.2 – February

Build caches
10X build time
improvement

Turnkey stack
A new user experience https://e4s.io Post-ECP Strategy

LSSw, ASCR Task Force

https://e4s.io/
https://spack.io/
https://e4s.io/

81

E4S DocPortal

• Single point of access

• All E4S products

• Summary Info
– Name
– Functional Area
– Description
– License

• Searchable

• Sortable

• Rendered daily from repos

https://e4s-project.github.io/DocPortal.html

All we need from the software team is
a repo URL + up-to-date meta-data files

https://e4s-project.github.io/DocPortal.html

82

Goal: All E4S product documentation accessible from single portal on E4S.io
(working mock webpage below)

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html

83

Policies: Version 1
https://e4s-project.github.io/policies.html

• P1: Spack-based Build and Installation

• P2: Minimal Validation Testing

• P3: Sustainability

• P4: Documentation

• P5: Product Metadata
• P6: Public Repository

• P7: Imported Software

• P8: Error Handling

• P9: Test Suite

E4S Community Policies: A commitment to quality improvement

• Purpose: Enhance sustainability and
interoperability

• Will serve as membership criteria for E4S
– Membership is not required for inclusion in E4S

– Also includes forward-looking draft policies

• Modeled after xSDK community policies
• Multi-year effort led by SDK team

– Included representation from across ST
– Multiple rounds of feedback incorporated from

ST leadership and membership

SDK lead: Jim Willenbring (SNL)

https://e4s-project.github.io/policies.html

84

Speeding up bare-metal installs using the E4S build cache

https://wdmapp.readthedocs.io/en/latest/machines/rhea.html

E4S Spack build cache:
• Fusion plasma:

• WDMapp added E4S mirror
• Speedup: 10X

• Turbine wind plant:
• ExaWind (Nalu-Wind)

• 6 minutes with build cache
• Up to 4 hours without

Special thanks
to Sameer
Shende,

WDMapp and
ExaWind teams

• 75,000+ binaries
• S3 mirror
• No need to build

from source code!

https://oaciss.uoregon.edu/e4s/inventory.html

https://wdmapp.readthedocs.io/en/latest/machines/rhea.html
https://oaciss.uoregon.edu/e4s/inventory.html

85

Policies: Version 1
https://e4s-project.github.io/policies.html

• P1: Spack-based Build and Installation

• P2: Minimal Validation Testing

• P3: Sustainability

• P4: Documentation

• P5: Product Metadata
• P6: Public Repository

• P7: Imported Software

• P8: Error Handling

• P9: Test Suite

E4S Community Policies: A commitment to quality improvement

• Purpose: Enhance sustainability and
interoperability

• Will serve as membership criteria for E4S
– Membership is not required for inclusion in E4S

– Also includes forward-looking draft policies

• Modeled after xSDK community policies
• Multi-year effort led by SDK team

– Included representation from across ST
– Multiple rounds of feedback incorporated from

ST leadership and membership

SDK lead: Jim Willenbring (SNL)

https://e4s-project.github.io/policies.html

86

Request for E4S Policy Status
Drove Improvement

• L4 Project reviews required gap assessment
against E4S Policies

• But no requirement to increase compatibility

• However, teams responded by reducing gaps

• On the right:
– Flurry of E4S “smoke test” PRs prior to reviews
– Other low hanging fruit changes made too

87

Takeaways from community policies

• Community policies need to emerge from the community itself

• Policies should be versioned and refined over time

• Signaling quality expectation, accurately, even with low precision can drive quality improvement

ECP ST Products:
Delivering for
Deployment
Developing and delivering new library and tool features
in a collaborative multi-phase lifecycle

89

Software feature development lifecycle model for an ST product
Phase

Incubate Harden Deliver Deploy

Developers Explore new
algorithms &
implementations

Refactor and merge
exploratory code, complete
tests, documentation

Promote to release branch,
integrate into SDK and E4S

Finalize smoke tests, DocPortal,
community policy, engage SD, facilities

Integrators Collaborative work in
a sandbox
environment

Product team integrates
feature

Product team promotes to
release, collaborates with
SDK/E4S team

Product team works with E4S team, SD
and facilities staff

Users Early collaborators,
co-develop with app
partners

Friendly app teams
prepared to work with the
ST team on debugging

App teams looking for latest
stable features and staffed to
incorporate new features

Apps looking for stable functionality in
turnkey environment

Availability Forked repo or local
branch

Develop (pre-release) repo
branch

Directly from main repo
branch

Product release site, E4S, vendor,
facility, community repo, or combo

Some Takeaways:
• AD users of ST products tend to engage in the incubate and harden phases of ST feature development
• First priority for ST teams must be engaging AD users
• First EAS/Exascale ports happen in incubation/harden phases
• For many ST features, sustainable deployment is not E4S (even though E4S inclusion is important)

90

Software feature development lifecycle model: Examples
Phase

Incubate Harden Deliver Deploy

Nalu-Wind &
hypre

Nalu-Wind team forks hypre repo, prototypes GPU-friendly 2-stage
Gauss-Seidel smoother consulting with hypre team, also fixes
GPU-only bugs in other parts of hypre

hypre team ingests
prototype GS smoother,
provides coverage tests

Available to all
hypre users

Coming
soon

SUNDIALS &
Ginkgo

SUNDIALS team collaborates with Ginkgo team on interface for
batched sparse solvers needed for Pele-C, others

Gingko refactors existing
APIs, tests

Available to all
Gingko users

Coming
soon

ALPINE &
VTK-m

ALPINE team prototypes a distributed contour tree algorithm within
their fork of VTK-m

VTK-m team merges into
their develop branch for
hardening

VTK-m
promotes to
release branch

In E4S
V21.11

Key points:
• Many of the most impactful ST capabilities are developed using this collaborative development pattern
• Incubation and hardening occur on the early-access systems since these systems are driving the need
• Ingesting for sustainable production use ends with promotion to the official release branch for delivery
• E4S integration occurs quarterly, several months after new features are available from product release branch

91

ECP Software Stream: Incubation to Installation
Facilities

Spack release branches
• Stable Spack
• Stable package versions
• Bugfixes backported

Spack development branch
• Very Fresh: 400-600 changes/month
• Latest features and package versions
• CI for latest E4S and SDK versions

E4S release branches
• Facility testing
• Curated public build caches
• Level 2 user support

External Contributors on GitHub

Software Integration at Facilities
• Integration of Vendor Stack
• Local builds and testing
• System tuned configurations
• Local filesystem installation
• Local module scheme

ECP AD Teams Consume Software From
• Direct source builds from ST teams
• Spack develop branch
• Spack releases
• E4S curated releases
• Facility Installed and Supported SW Stack

ECP ST Product Teams
• Direct AD collaboration
• Incubation and Hardening
• Packaging into Spack Ecosystem
• Level 3 support for E4S

Incubate

Harden Deliver Deploy Install

Frank – Designed for
Libs & Tools Developers

• Prep system for ECP libs & tools
• Access to latest non-NDA HW/SW
• Shared file system – 1 copy of SW
• Port to many device types at once
• Porting support from E4S team
• CI testing workhorse (500K builds)
• Next: Bare metal, BIOS-changing

support for low-level software work

Wrapping It Up

94

ECP is a complex system

• ECP is specifically about preparing ~25 application code for Exascale computing systems and
creating a sustainable underlying software stack, but it is much more

• The complexity of the ECP mission (cost, scope and schedule) require innovation, risk taking

• Requirements and solution emerge over time

• ECP is a big human experiment: Why I joined!

95

ECP goal: A sustainable, reusable software ecosystem

• ECP is driving the creation of a portfolio approach for reusable scientific software:
– Available to you from laptops to supercomputers
– Portable across CPU and GPU architectures
– Available as open source for you to use, contribute to, and collaborate with

• Creating a future software organization that is a first-class citizen in the leadership computing
ecosystem

• And You:
– Consider using E4S: https://e4s-project.github.io/download.html
– Consider contributing to E4S: https://e4s-project.github.io/join.html
– Consider contributing to one of the SDKs, e.g.: https://xsdk.info

https://e4s-project.github.io/download.html
https://e4s-project.github.io/join.html
https://xsdk.info/

96

ECP goal: A better scientific software future

• Improving how we do our work

• Engaging a broader community

• And You:
– Receive our BSSw email digest: https://bssw.io/pages/receive-our-email-digest
– Contribute to BSSw.io: https://bssw.io/pages/what-to-contribute-content-for-better-scientific-software
– Apply for 2023 BSSw Fellowship (summer 2022): https://bssw.io/fellowship
– Attend:

• HPC Best Practices Webinars: https://ideas-productivity.org/events/hpc-best-practices-webinars
• Working Remotely Panels: https://ideas-productivity.org/events/strategies-for-working-remotely-panels
• Our tutorials: https://bssw-tutorial.github.io

https://bssw.io/pages/receive-our-email-digest
https://bssw.io/pages/what-to-contribute-content-for-better-scientific-software
https://bssw.io/fellowship
https://ideas-productivity.org/events/hpc-best-practices-webinars
https://ideas-productivity.org/events/strategies-for-working-remotely-panels
https://bssw-tutorial.github.io/

97

ECP goal: A sustainable software R&D community

• Growing an R&D community of diverse contributors toward exploring and realizing leadership
computing, generation to generation

• Exploring emerging algorithms, software, and computing platforms to deliver capabilities for
solving emerging scientific problems

• And You:
– Join the Leadership Scientific Software (LSSw) conversation: https://lssw.io

• Slack workspace, mail lists, archive of previous town halls
• Registration for next town hall

– Track DOE efforts in Research Software Science (RSS)
• Science of Scientific-Software Development and Use Workshop: https://www.orau.gov/SSSDU2021
• Download position papers: https://www.orau.gov/support_files/2021SSDU/2021-Position-Papers.zip
• Look for workshop report in late spring 2022

https://lssw.io/
https://www.orau.gov/SSSDU2021
https://www.orau.gov/support_files/2021SSDU/2021-Position-Papers.zip

98

Summary

• Using a portfolio-based approach for HPC software is about going together vs going alone

• While products vary greatly, we all face the same frontiers: Evolving systems, quality, users

• Success on the frontier is important for all HPC configurations: leadership to laptop

• Progress is made by collaborating and sharing information

• The new and evolving E4S and SDKs platforms enable better, faster and cheaper, in net

• A collective approach, esp. E4S, enables new relationships with facilities, vendors, apps, others

• Improving how we develop & use software is an important scientific effort itself, as a community

• Via LSSw, we are planning for a sustainable future that builds on the progress ECP has enabled

• Via RSS, we are expanding scientific software team skills to include social and cognitive sciences

99

ST Capability Assessment Report (CAR)

•Products discussed here are presented with
more detail and further citations.

•We classify ECP ST product deployment as
broad, moderate, or experimental.
– Broad and moderate deployment is typically

suitable for collaboration.
– Web links are available for almost all products.
– 67 of 71 of ECP ST products are available as part

of the Extreme-scale Scientific Software Stack
(E4S) http://e4s.io.

– CAR V3.0 appears in June

https://www.exascaleproject.org/wp-content/uploads/2021/01/ECP-ST-CAR-v2.5.pdf

http://e4s.io/
https://www.exascaleproject.org/wp-content/uploads/2021/01/ECP-ST-CAR-v2.5.pdf

100

Thank you
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who
are passionately working toward next-generation computational science.

https://www.exascaleproject.org

ECP Director: Doug Kothe
ECP Deputy Director: Lori Diachin

2022

