
From Desktop to Exascale: All in on GPUs

Michael A. Heroux
Senior Scientist, Sandia National Laboratories
Former Director of Software Technology, ECP
PI, PESO, Post-ECP Software-Ecosystem Stewardship Project
SIAM Fellow

SIAM Supercomputing Spotlights Series
September 11, 2024

Maintain

international

leadership

in HPC

Promote the

health of the

US HPC industry

Deliver a sustainable

software ecosystem

used and maintained

for years to come

Ensure that exascale

systems can be used

to deliver mission-

critical applications

Exascale Computing Project

Application Development

• Develop and enhance the predictive capability of applications,
25 applications, 6 Co-Design Centers

Software Technology

• Deliver expanded and vertically integrated software stack, 70 unique products

Hardware and Integration

• Application integration and software deployment to facilities, exascale node
and system design, 6 US HPC vendors

7-year, $1.8B
US Department of Energy

project funded 1000+ people

at national labs, universities,

US industries

This research was supported by the Exascale

Computing Project (17-SC-20-SC), a collaborative effort

of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration.

3

ECP Application Development

Health care

Accelerate
and translate

cancer research
(partnership with NIH)

Energy security

Turbine wind plant
efficiency

Design and
commercialization

of SMRs

Nuclear fission
and fusion reactor
materials design

Subsurface use
for carbon capture,
petroleum extraction,

waste disposal

High-efficiency,
low-emission

combustion engine
and gas turbine

design

Scale up of clean
fossil fuel
combustion

Biofuel catalyst
design

National security

Next-generation,
stockpile

stewardship codes

Reentry-vehicle-
environment
simulation

Multi-physics science
simulations of high-

energy density
physics conditions

Economic security

Additive
manufacturing

of qualifiable
metal parts

Reliable and
efficient planning
of the power grid

Seismic hazard
risk assessment

Earth system

Accurate regional
impact assessments

in Earth system
models

Stress-resistant crop
analysis and catalytic

conversion
of biomass-derived

alcohols

Metagenomics
for analysis of

biogeochemical
cycles, climate

change,
environmental
remediation

Scientific discovery

Cosmological probe
of the standard model

of particle physics

Validate fundamental
laws of nature

Plasma wakefield
accelerator design

Light source-enabled
analysis of protein

and molecular
structure and design

Find, predict,
and control materials

and properties

Predict and control
magnetically

confined fusion
plasmas

Demystify origin of
chemical elements

The 24 AD application projects

• Include 62 separate codes

• Represent over 10 million lines of code

• In some cases support large user communities

• Mostly started with MPI or MPI+OpenMP on CPUs

Manycore
CPU

CPU+
GPU

CPU+
Multi-GPU

Diverse
Multi-GPU

GPU
Resident

Architecture-
specific

optimization

ECP libraries and tools supported diverse applications across multiple architectures

70 software products across 6 technical areas

Develop and deliver high-quality
and robust software products

Guide, and complement, and
integrate with vendor efforts

Prepare SW stack for scalability
with massive on-node parallelism

Extend existing capabilities when
possible, develop new when not

ECP Software
Technologies

LLNL El Capitan
HPE/AMD

ANL Aurora
Intel/HPE

ORNL
Frontier

HPE/AMD

4

ECP Impact – Portable
Libraries and Tools for
Accelerators

6

ECP ST six technical areas

Programming
Models & Runtimes

•Enhance and get
ready for exascale the
widely used MPI and
OpenMP
programming models
(hybrid programming
models, deep
memory copies)

•Development of
performance
portability tools (e.g.
Kokkos and Raja)

•Support alternate
models for potential
benefits and risk
mitigation: PGAS
(UPC++/GASNet)
,task-based models
(Legion, PaRSEC)

•Libraries for deep
memory hierarchy
and power
management

Development
Tools

• Continued,
multifaceted
capabilities in
portable, open-
source LLVM
compiler
ecosystem to
support expected
ECP
architectures,
including support
for F18

• Performance
analysis tools that
accommodate
new
architectures,
programming
models, e.g.,
PAPI, Tau

Math Libraries

•Linear algebra,
iterative linear
solvers, direct linear
solvers, integrators
and nonlinear
solvers,
optimization, FFTs,
etc

•Performance on new
node architectures;
extreme strong
scalability

•Advanced
algorithms for multi-
physics, multiscale
simulation and
outer-loop analysis

•Increasing quality,
interoperability,
complementarity of
math libraries

Data and
Visualization

• I/O via the HDF5
API

• Insightful,
memory-efficient
in-situ
visualization and
analysis – Data
reduction via
scientific data
compression

• Checkpoint
restart

Software
Ecosystem

•Develop features in
Spack necessary to
support all ST
products in E4S, and
the AD projects that
adopt it

•Development of
Spack stacks for
reproducible turnkey
deployment of large
collections of
software

•Optimization and
interoperability of
containers on HPC
systems

•Regular E4S
releases of the ST
software stack and
SDKs with regular
integration of new
ST products

NNSA ST

• Open source
NNSA Software
projects

• Projects that have
both mission role
and open science
role

• Major technical
areas: New
programming
abstractions,
math libraries,
data and viz
libraries

• Cover most ST
technology areas

• Subject to the
same planning,
reporting and
review processes

6

7

ECP-sponsored Software Products:
A Sample

8

GPU-specific kernels

• Isolate the computationally-intensive parts of

the code into CUDA/HIP/SYCL kernels.

• Refactoring the code to work well with the

GPU is the majority of effort.

Loop pragma models

• Offload loops to GPU with OpenMP or

OpenACC.

• Most common portability strategy for Fortran

codes.

C++ abstractions

• Fully abstract loop execution and data

management using advanced C++ features.

• Kokkos and RAJA developed by NNSA in

response to increasing hardware diversity.

Co-design frameworks

• Design application with a specific motif to use

common software components

• Depend on co-design code (e.g. CEED,

AMReX) to implement key functions on GPU.

Programming Models & Runtimes

Four Parallel
Node

Programming
Approaches

9

Adapt
Numerics

Port
Code

Adapt
Models

• Rewrite, profile, and optimize

• Memory coalescing

• Loop ordering

• Kernel flattening

• Reduced synchronization

• Reduced precision

• Communication avoiding

• Mathematical representation

• “On the fly” recomputing vs.

lookup tables

• Prioritization of new physical

models

Efficiently utilizing GPUs goes far beyond typical code porting

ECP efforts have de-risked (but not removed) these activities for others

10

DOE Exascale Computing Project

21

8

4

6

ECP SOFTWARE PROJECTS USING C++: WITH CRITICAL DEPENDENCY
ON

Kokkos Based AMReX Based RAJA Based Other C++ Codes

Large Majority of C++ Codes Chose Abstraction over Vendor Models!

17 Codes list Fortran as critical

• Some of those actually moved on

• Not all of those run on GPUs

• CUDA Fortran, OpenMP, OpenACC

11

Kokkos Programming Model

11

12

What is Kokkos?

A C++ Programming Model for Performance Portability

▪ Implemented as a template library on top of CUDA, OpenMP, HIP, SYCL, …

▪ Aims to be descriptive not prescriptive

▪ Aligns with developments in the C++ standard

▪ Replaces usage of CUDA, OpenMP, HIP, etc.

Expanding solution for common needs of modern science/engineering codes

▪ Math libraries based on Kokkos

▪ Tools which enable insight into Kokkos

It is Open Source

▪ Maintained and developed at https://github.com/kokkos

It has many users at wide range of institutions.

Kokkos is NOT just for GPUs!

https://github.com/kokkos

13

14

The Kokkos Ecosystem

Linear Algebra Kernels Graph Kernels

Kokkos Kernels

Kokkos Core

Parallel Execution Parallel Data Structures

Science and Engineering Applications

Kokkos EcoSystem

Kokkos

Tools

Debugging

Profiling

Kokkos

Support

Tutorials

Bootcamps

App support

Documentation

Tuning

Global Arrays

Kokkos Remote Spaces

Python Bindings

PyKokkos

Python Programming

Data Snapshot

Resilience

Redundant Execution

View Bindings

Fortran Interop

Trilinos
PETSc

ArborX

Cabana

Distributed LA,

Solvers, MultiGrid,
UQ, AD,

Discretization, Time

Integration

PDE Solvers/Data Str.

Geometric Search

Particle Sim Toolkit

15

Kokkos Core Abstractions

Kokkos

Execution Spaces (“Where”)

Execution Patterns

Execution Policies (“How”)

Memory Spaces (“Where”)

Memory Layouts

Memory Traits (“How”)

Parallel ExecutionData Structures

- CPU, GPU, Executor Mechanism

- parallel_for/reduce/scan, task-spawn

- Range, Team, Task-Graph

- HBM, DDR, Non-Volatile, Scratch

- Row/Column-Major, Tiled, Strided

- Streaming, Atomic, Restrict

16

CG Solve: The AXPBY

void axpby(int n, View<double*> z, double alpha, View<const double*> x,
 double beta, View<const double*> y) {
 parallel_for("AXpBY", n, KOKKOS_LAMBDA (const int i) {
 z(i) = alpha*x(i) + beta*y(i);
 });
}

Simple data parallel loop: Kokkos::parallel_for

Easy to express in most programming models

Bandwidth bound

Serial Implementation:

Kokkos Implementation:

void axpby(int n, double* z, double alpha, const double* x,
 double beta, const double* y) {
 for(int i=0; i<n; i++)
 z[i] = alpha*x[i] + beta*y[i];
}

Parallel Pattern: for loop

String Label: Profiling/Debugging

Execution Policy: do n iterations

Iteration handle: integer index

Loop Body

16

17

Kokkos Support

The Kokkos Lectures

▪ 8 lectures covering most aspects of Kokkos

▪ 15 hours of recordings

▪ > 500 slides

▪ >20 exercises

Extensive Wiki

▪ API Reference

▪ Programming Guide

Slack as primary direct support

• Module 1: Introduction

• Introduction, Basic Parallelism, Build System

• Module 2: Views and Spaces

• Execution and Memory Spaces, Data Layout

• Module 3: Data Structures and MDRangePolicy

• Tightly Nested Loops, Subviews, ScatterView,…
• Module 4: Hierarchical Parallelism

• Nested Parallelism, Scratch Pads, Unique Token

• Module 5: Advanced Optimizations

• Streams, Tasking and SIMD

• Module 6: Language Interoperability

• Fortran, Python, MPI and PGAS

• Module 7: Tools

• Profiling, Tuning , Debugging, Static Analysis
• Module 8: Kokkos Kernels

• Dense LA, Sparse LA, Solvers, Graph Kernels

https://kokkos.link/the-lectures

https://kokkos.link/the-lectures

18

Kokkos Kernels

BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction

▪ Scalar type agnostic, e.g. works for any types with math operators

▪ Layout and Memory Space aware

Can call vendor libraries when available

Views contain size and stride information => Interface is simpler

// BLAS
int M, N, K, LDA, LDB; double alpha, beta; double *A, *B, *C;
dgemm('N','N’, M, N, K, alpha, A, LDA, B, LDB, beta, C, LDC);

// Kokkos Kernels
double alpha, beta; View<double**> A,B,C;
gemm('N','N’, alpha, A, B, beta, C);

vs.

19

Variorum provides safe, user-space, vendor neutral access for
all users: administrators, application scientists and RSEs

PI: Tapasya Patki
Team: Kathleen

Shoga, Stephanie
Brink, Eric Green,

Aniruddha Marathe,
Barry Rountree

Development Tools

20

Variorum: Vendor-neutral user space library for power management

• Power management capabilities (and their interfaces, domains, latency, capabilities)
widely differ from one vendor to the next, needing common interfaces

• Variorum: Platform-agnostic vendor-neutral, simple front-facing APIs

– Evolved from libmsr, and designed to target several platforms and architectures

– Abstract away tedious and chaotic details of low-level knobs

– Implemented in C, with function pointers to specific target architecture

– Integration with higher-level power management software through JSON

• Integrated with Flux, GEOPM, LDMS, Kokkos, Caliper and PowerAPI to enable a
PowerStack

• Supported on all upcoming exascale systems (Aurora, Frontier, El Capitan) and several
other supercomputers: architecture support includes CPU support for ARM, AMD, Intel,
IBM; and GPU support for NVIDIA, AMD and Intel.

21

Systems Engineering Domain

Gene regulatory networks (source: Peles et al. 2006)

Solid oxide fuel cell plant (source: Kameswaran at al. 2010)

Buildings (source: EEB Hub, B661 2014) Power grids

(source: PNNL)

(source: Alverstone

Aviation Society)
Aircraft power systems

• ExaSGD addresses systems engineering problems

• Produced new direct sparse solvers using non-

supernodal structures, for GPUs

• Cholesky for symmetric, LU for non-symmetric

• Joint effort between SuperLU, Ginkgo, ExaSGD teams

Math Libraries

22

Linear Solver Performance within Optimization Algorithm
Average per iteration times (including first iteration on CPU)

• Each GPU solution
outperforms all CPU baselines

• Ginkgo performance improves
on a better GPU

• Iterative refinement
configuration affects linear
solver performance and
optimization solver
convergence

105 134 106 107 102 131
28

22
28 29 26

18
69 53 70 69 68 51
58 35 61 63 57 33

83 68

169 119

12 23

328
927 198

138
284

192

0

100

200

300

400

500

600

700

800

900

1000

MA57 (P9) MA57 (EPYC) cuSolverRf
(V100)

cuSolverGLU
(V100)

Ginkgo (V100) Ginkgo
(MI250X)

T
im

e
[m

s]

Factorize
Solve
Other

Constraint Jacobian
Constraints

Ginkgo provides the first portable GPU-resident sparse direct linear solver for non-supernodal systems

23

ZFP compressed multidimensional array primitive
Addressing growing gap of ops vs bw vs memory

• Fixed-length compressed blocks enable fine-grained read & write random
access

– C++ compressed-array classes hide complexity of compression & caching from user

– User specifies per-array storage footprint in bits/value

• Absolute and relative error tolerances supported for offline storage, sequential
access

• Fast, hardware friendly, and parallelizable: 150 GB/s throughput on NVIDIA
Volta

• HPC tool support:

virtual array
compressed blocks

dirty
bit uncompressed data

software cache

block
index

application

Prepared by LLNL under Contract DE-AC52-07NA27344.

Inline compression boosts solution
accuracy by 40x over IEEE in CEED code

Data and Visualization

24

And Many More…

•ECP generated a

– Collection of portable GPU-capable libraries and tools for AMD, Intel, and NVIDIA devices

– Designed for future adaptation to next-generation highly-concurrent node architectures

– Foundation for others who will make the transition from CPU to GPU and beyond

25

ECP Software Technology works on products that apps need now and in the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards

C++ Performance Portability Abstractions Lightweight APIs for compile-time polymorphisms

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage

Viz/Data Analysis ParaView-related product development, node concurrency

Key themes:

• Focus: GPU node architectures and advanced memory & storage technologies

• Create: New high-concurrency, latency tolerant algorithms

• Develop: New portable (Nvidia, Intel, AMD GPUs) software product

• Enable: Access and use via standard APIs
Software categories:

• Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, PETSc)

• Robust emerging products: Address key new requirements (e.g., Kokkos, RAJA, Ginkgo, Spack)

• New products: Enable exploration of emerging HPC requirements (e.g., Variorum, zfp)

Legacy: A stack that
enables performance
portable application
development on
leadership platforms

26

Spack: How we build and test our software

27

• ARES is a 1, 2, and 3-D
radiation hydrodynamics code

• The ARES configuration
shown here has 47
dependencies

• ARES team runs nightly builds
for 36 different configurations

4 code versions:

– (C)urrent Production

– (P)revious Production

– (L)ite

– (D)evelopment

Spack automates the build of LLNL multi-physics codes

Spack enabled testing on 3 platforms, 6 compilers, and 3 MPI implementations.

28

• DOE people never settled for the “off-the-shelf” configuration

– Always want to customize library versions, build options, flags

• Composition is a fundamental part of Spack’s model

– Allows you to swap components like compilers, libraries, GPU runtimes, etc.

• Most distributions build a much more static stack

Spack has been ambitious about customizability from the start:
“Just say what you want to install”

$ spack install mpileaks unconstrained

$ spack install mpileaks@3.3 @ custom version

$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler

$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option

$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags

$ spack install mpileaks@3.3 target=cascadelake set target microarchitecture

$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency constraints

29

Now, the E4S stack is more than 600 packages!

– Red boxes are the packages in it (about 100)

– Blue boxes are what else you need to build it (about 600)

– E4S sits on top of hundreds of open source community projects

30

2016

Spring
2018

Fall
2018

Fall
2020

Spring
2021

Fall
2021

2023

2024

31

Extreme-scale Scientific Software Stack (E4S)

• E4S: HPC software ecosystem – a curated software portfolio

• A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

• Available from source, containers, cloud, binary caches

• Not a commercial product – an open resource for all

• Growing functionality: May 2024: E4S 24.05 – 140+ full release products

• One of the most important legacies of ECP

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

Community Policies
Commitment to SW quality

DocPortal
Single portal to all

E4S product info

Portfolio testing
Especially leadership

platforms

Curated collection
The end of dependency hell

Regular releases
Release 24.11 – November

Build caches
10X build time
improvement

Turnkey stack
A new user experience

https://e4s.io Post-ECP Strategy
PESO & CASS

https://spack.io

Spack lead: Todd Gamblin (LLNL)

https://e4s.io/
https://e4s.io/
https://spack.io/
https://spack.io/

32

Highlights from
Sean Ziegeler talk at
ECP IAC Meeting

• Port and use of Spack/E4S
without DOE assistance

• Phase 1:

– Five HPC systems

– 3-4 compiling systems

– 2 MPIs

– 100 products + dependencies

• Phase 2:

– Deep dive with 16 products

– Used by DoD, in E4S

33

Highlights from
Sean Ziegeler talk at
ECP IAC Meeting

• Port and use of Spack/E4S
without DOE assistance

• Phase 1:

– Five HPC systems

– 3-4 compiling systems

– 2 MPIs

– 100 products + dependencies

• Phase 2:

– Deep dive with 16 products

– Used by DoD, in E4S

34

Highlights from
Sean Ziegeler talk at
ECP IAC Meeting

• Port and use of Spack/E4S
without DOE assistance

• Phase 1:

– Five HPC systems

– 3-4 compiling systems

– 2 MPIs

– 100 products + dependencies

• Phase 2:

– Deep dive with 16 products

– Used by DoD, in E4S

35

Highlights from
Sean Ziegeler talk at
ECP IAC Meeting

• Port and use of Spack/E4S
without DOE assistance

• Phase 1:

– Five HPC systems

– 3-4 compiling systems

– 2 MPIs

– 100 products + dependencies

• Phase 2:

– Deep dive with 16 products

– Used by DoD, in E4S

36

Highlights from
Sean Ziegeler talk at
ECP IAC Meeting

• Port and use of Spack/E4S
without DOE assistance

• Phase 1:

– Five HPC systems

– 3-4 compiling systems

– 2 MPIs

– 100 products + dependencies

• Phase 2:

– Deep dive with 16 products

– Used by DoD, in E4S

37

Highlights from
Sean Ziegeler talk at
ECP IAC Meeting

• Port and use of Spack/E4S
without DOE assistance

• Phase 1:

– Five HPC systems

– 3-4 compiling systems

– 2 MPIs

– 100 products + dependencies

• Phase 2:

– Deep dive with 16 products

– Used by DoD, in E4S

E4S 24.05 Release
• 140+ HPC-AI packages on ARM, x86_64, ppc64le platforms, 128K+ binaries in E4S build

Cache
• Growing suite of AI/ML packages

• DeepHyper, Google.generativeai (Gemini API), OpenAI (API), TorchBraid, Pandas, Scikit-Learn, JAX, PyTorch,
TensorFlow, Horovod, OpenCV, and LBANN with support for GPUs

• E4S DocPortal updated with AI/ML tools

• OS upgrade for containers: Ubuntu 22.04 LTS
• Upgraded

• CUDA from version 11 to 12,
• ROCm upgraded from version 5.4 to 5.7.1.

• New tools: Laghos, Glvis, netcdf-fortran, fpm, e4s-cl, and e4s-alc.
• New applications: Nek5000, Nekbone, Laghos and previously supported GROMACS, CP2K,

Xyce, Quantum Espresso, ExaGo, LAMMPS, WARPX, Dealii, and OpenFOAM.
• Adaptive Computing’s HPC Cloud on-demand data center (ODDC) web-based platform

• Multi-user, multi-node ParaTools Pro for E4S images on AWS marketplace with support for aarch64 (Graviton)
as well as x86_64 with NVIDIA GPUs with

• VNC based remote desktop and torque (qsub) for multi-node execution
• https://adaptivecomputing.com/

38

CI Testing:
• Frank: Extensive multi-device system
• Includes Grace-Grace, Grace-Hopper
• 7M+ CI builds

E4S 24.11 Release – Look for SC24 announcement

https://adaptivecomputing.com/

Looking Forward
Post-ECP Software Stewardship

and Advancement

8 Software Stewardship Organizations (SSOs)
DOE Office of Advanced Scientific Computing Research (ASCR) Post-ECP Projects

COLABS

Training, workforce
development, and building

the RSE community

CORSA

Partnering with foundations
to provide sustainable
pathways for scientific

software

FASTMATH

Stewardship, advancement,
and integration for math and

ML/AI packages

PESO

Stewarding, evolving and
integrating a cohesive

ecosystem for DOE software

RAPIDS

Stewardship, advancement,
and integration for data,
visualization and ML/AI

packages

S4PST

Stewardship, advancement
and engagement for

programming systems

STEP

Stewardship, advancement
of software tools for

understanding performance
and behavior

SWAS

Stewardship and project
support for scientific

workflow software and its
community

40

Announcing CASS
The Consortium for the Advancement of Scientific Software

https://cass.community

CASS Basics
• A newly-formed organization

• Sponsored by DOE Office of
Advanced Scientific Computing
Research (ASCR)

• Established by DOE Software
Stewardship Organizations (SSOs)

CASS Goals
• Forum for SSO collaboration and

coordination

• Bigger than the sum of its parts

• Vehicle for advancing the scientific
software ecosystem

CASS Status
• Defining governance structure

• Establishing community awareness

• Building a team of teams

• Collaborating on outreach

Software Stewardship Organization (SSO) Basics

• Each SSO represents a specific software ecosystem concern

• Product SSOs: Programming systems, performance tools,
 math packages, data/viz packages

• Portfolio SSO: Curating & delivering software stack to the
 community

• Community SSOs: Workforce, partnerships

Engage with CASS

• Review slides June 11-13 CASS Community BOF Days:
https://cass.community/bofs

• Visit https://cass.community
41

https://cass.community/bofs
https://cass.community/

Consortium for the Advancement of
Scientific Software (CASS)

• CASS Formation Team
• David Bernholdt
• Phil Carns
• Lois Curfman McInnes

• Representatives of Software Stewardship
Organizations (SSOs)

• COLABS: Anshu Dubey, David Bernholdt
• CORSA: Greg Watson, Elaine Raybourn
• FASTMath: Esmond Ng, Todd Munson
• PESO: Mike Heroux, Todd Gamblin
• RAPIDS: Rob Ross, Lenny Oliker
• S4PST: Keita Teranishi, Damian Rouson
• STEP: Terry Jones, Phil Carns
• SWAS: Rafael Ferreira da Silva, Lavanya Ramakrishnan

42

43

About PESO
• Five-year post-ECP software-ecosystem stewardship and advancement project

• Partnership with CASS

• PESO leads portfolio activities of E4S+Spack curation, testing, delivery

Key PESO goals
• Enable applications to realize benefits of a software ecosystem

• Emphasize software product quality, the continued fostering of software

product communities, and the delivery of products, working with CASS

The PESO Project exists to preserve, sustain, and advance the investments made

by the Exascale Computing Project in a robust, versatile, and portable HPC

software ecosystem and the people who make the ecosystem effective.

PESO is unique in its organization by composing itself of many members of other

software stewardship organizations (SSOs) to best ensure tight integration across

the SSOs and support the mission of the Consortium for the Advancement of

Scientific Software (CASS).

Key PESO Activities
• Partnerships: We lead CASS efforts for diverse and inclusive workforce with

sustainable career paths. We shepherd BSSw Fellows Program and BSSw.io portal.
• Services: We provide services including software product management, integration,

and delivery, as well as software quality assurance and security.

• Products: We deliver & support products via Spack & E4S, provide porting & testing
platforms leveraged across product teams to ensure code stability & portability.

PI: Michael Heroux, Sandia National Laboratories

Collaborating Institutions: ANL, Berkeley, BNL, Kitware, LLNL, LANL, ORNL, PNNL, SNL, SHI, UO
ASCR Program: Software Stewardship and Advancement

ASCR PM: William Spotz

Resources: https://pesoproject.org, https://e4s.io, https://hpsf.io

PESO: Partnering for Scientific Software Ecosystem Stewardship Opportunities

https://pesoproject.org/
https://e4s.io/
https://hpsf.io/

44

Are these challenges familiar? Investing in the Spack/E4S ecosystem can help

➢Installing 3rd party libs and tools

➢Managing library version updates

➢Adopting new libraries and tools

➢Managing portability across CPUs/GPUs

PESO: Partnering for Scientific Software Ecosystem Stewardship Opportunities

Spack and E4S
“Powers of 10”

possibilities

https://pesoproject.org

Engage with PESO

100+
Speedup using advanced devices like GPUs
ECP-sponsored applications realize a factor of 100 or more science-speedup by

reformulating algorithms and software to exploit GPUs

10+
Reduction in build times via Spack build caches
Spack build caches reduce re-build times by a factor of 10 or more, greatly

reducing staff wait times and accelerating debugging and reconfiguration activities

1
Source code base for all computing systems
Your single source code base that achieves performance portability, now and in

the future, using libraries, tools, and compilers available via Spack and E4S

100,000+
Lines of code replaced with high-quality libs & tools
Using robust open-source libraries and tools helps you eliminate native source

code that is less capable, more fragile, and harder to maintain

10,000+
Community members via ecosystem collaborations
Shared experiences using the same ecosystem increases community knowledge

base, improved software capabilities, cross-teaming

1,000+
Code teams share ecosystem costs & benefits
Pooling investments and making the software ecosystem available everywhere

optimizes cost and benefit sharing across many users

➢Long build times

➢Out-of-date algorithms

➢Awareness of latest SW practices

➢Opportunities to improve your software

https://pesoproject.org/

45

The High-Performance Software Foundation

PI(s)/Facility Lead(s): Todd Gamblin, Christian Trott

Collaborating Institutions: NNSA/ASC, PESO, CORSA, Linux Foundation

DOE Programs: NNSA/ASC, ASCR/NGSST

DOE PMs: Si Hammond, William Spotz, David Rabson, Hal Finkel

Resources: https://hpsf.io
46

Significance and Impact
• Initial membership raised more funds than expected: ~$1M annual budget

• ISC kickoff BOF session was standing-room only; generating much excitement

• Expect to grow membership and projects over time

○ 2 NNSA, 2 ASCR, 2 European projects in the pipeline

○ Expecting at least 2 more general members within the year

Approach
• Separate financial (GB), technical (TAC), and project governance

• Interact directly with key projects in the HPC ecosystem

• Grow contributor base through increased adoption, training, events, outreach

• Build a portable, accelerated software stack for HPC and beyond

We launched the High Performance Software Foundation (HPSF) at ISC24

Premier Members

General Members

Associate Members

Scientific Achievements
• NNSA led the formation of HPSF over the past 18 months, in close collaboration with

DOE/ASCR, industry, and the Linux Foundation

• 15 founding members, 6 initial projects from industry, academia, labs around the world

• HPSF provides open source projects with:

○ A neutral home

○ Funds for project infrastructure, working groups, events, other initiatives
○ Collaborations ○ Open governance

https://hpsf.io/

47

Some opportunities going forward

• The growing success of generative AI is spurring disruptive changes in scientific software

• GPUs are really AI devices (CPUs are still relevant and can benefit from concurrency too)

• A recent Hyperion survey estimates the high-end AI market is 30 times larger than traditional HPC

– Bad news: We are no longer a strong market driver

– Good news: The HPC market is still large but the AI market is huge. We can benefit greatly, if we want …

• Here are three ways to benefit:

1. New algorithms adapted to AI devices
New computing devices, such as GPUs designed for AI workflows, are suitable for traditional scientific
codes but require extensive algorithm and software changes to realize their potential.

2. AI models to complement or replace analytic models
AI inference engines are compelling components, complementing or replacing traditional modeling and
simulation approaches.

3. Leverage AI tools in our research work
Generative AI tools are transforming the entire research enterprise, especially software activities. AI tools
assist in producing requirements, specifications, designs, source code, tests, and more. These changes
are exciting but come with risks.

48

Summary

• The Exascale Computing Project (ECP):

– Explored many approaches to performance-portable accelerator-based computing

– Focused on very high end but most innovations were on the node: suitable for desktop on up

– De-risked the path for many others: 62 applications from many domains showed a path forward

• In addition to transforming your own software base, you could consider using ECP-developed
products:

– Kokkos, zfp, Spack are a few

– E4S provides many others

– HPSF-sponsored products are also emerging

• PESO, CASS, and other software stewardship projects are evolving to meet future needs

• Happy to talk further: mheroux@acm.org

mailto:mheroux@acm.org

49

Post-ECP and Final Remarks

DOE/ECP has learned a lot about producing software contributions to the HPC community:

▪ Improved planning, executing, tracking, assessing, integrating, and delivering

▪ Improved interactions with the broader HPC software and hardware community

▪ Direct engagement with industry, US agencies, and international collaborators

In post-ECP efforts we propose to continue and expand these efforts:

▪ Further engage with commercial partners to provide a rich, robust software ecosystem

▪ Evolve a stable, sustainable business model for engaging with agencies and industry

▪ Engage with cloud providers, software foundations, and others to optimize cost & benefit sharing

▪ Further the ECP strategy for direct industry and agency engagement

We intend to realize the potential of the ECP legacy across the HPC community:

▪ Realize the potential of software ecosystems by leveraging “powers of 10” advantages

▪ Increase the trustworthiness, sustainability, and cost effectiveness of our software in the future

▪ Support existing and emerging needs for AI/ML libraries and tools

We want to work with the HPC community to realize the legacy of ECP, and beyond

▪ We have many new ways to interact

▪ Many new opportunities to pursue

Thank you!

	Slide 1: From Desktop to Exascale: All in on GPUs
	Slide 2
	Slide 3: ECP Application Development
	Slide 4: ECP libraries and tools supported diverse applications across multiple architectures
	Slide 5: ECP Impact – Portable Libraries and Tools for Accelerators
	Slide 6: ECP ST six technical areas
	Slide 7: ECP-sponsored Software Products: A Sample
	Slide 8
	Slide 9
	Slide 10: DOE Exascale Computing Project
	Slide 11: Kokkos Programming Model
	Slide 12: What is Kokkos?
	Slide 13
	Slide 14: The Kokkos Ecosystem
	Slide 15: Kokkos Core Abstractions
	Slide 16: CG Solve: The AXPBY
	Slide 17: Kokkos Support
	Slide 18: Kokkos Kernels
	Slide 19: Variorum provides safe, user-space, vendor neutral access for all users: administrators, application scientists and RSEs
	Slide 20: Variorum: Vendor-neutral user space library for power management
	Slide 21: Systems Engineering Domain
	Slide 22: Linear Solver Performance within Optimization Algorithm Average per iteration times (including first iteration on CPU)
	Slide 23: ZFP compressed multidimensional array primitive Addressing growing gap of ops vs bw vs memory
	Slide 24: And Many More…
	Slide 25: ECP Software Technology works on products that apps need now and in the future
	Slide 26: Spack: How we build and test our software
	Slide 27: Spack automates the build of LLNL multi-physics codes
	Slide 28: Spack has been ambitious about customizability from the start: “Just say what you want to install”
	Slide 29: Now, the E4S stack is more than 600 packages!
	Slide 30
	Slide 31: Extreme-scale Scientific Software Stack (E4S)
	Slide 32: Highlights from Sean Ziegeler talk at ECP IAC Meeting
	Slide 33: Highlights from Sean Ziegeler talk at ECP IAC Meeting
	Slide 34: Highlights from Sean Ziegeler talk at ECP IAC Meeting
	Slide 35: Highlights from Sean Ziegeler talk at ECP IAC Meeting
	Slide 36: Highlights from Sean Ziegeler talk at ECP IAC Meeting
	Slide 37: Highlights from Sean Ziegeler talk at ECP IAC Meeting
	Slide 38: E4S 24.05 Release
	Slide 39: Looking Forward Post-ECP Software Stewardship and Advancement
	Slide 40: 8 Software Stewardship Organizations (SSOs) DOE Office of Advanced Scientific Computing Research (ASCR) Post-ECP Projects
	Slide 41: Announcing CASS The Consortium for the Advancement of Scientific Software https://cass.community
	Slide 42: Consortium for the Advancement of Scientific Software (CASS)
	Slide 43: PESO: Partnering for Scientific Software Ecosystem Stewardship Opportunities
	Slide 44
	Slide 45: The High-Performance Software Foundation
	Slide 46: We launched the High Performance Software Foundation (HPSF) at ISC24
	Slide 47: Some opportunities going forward
	Slide 48: Summary
	Slide 49: Post-ECP and Final Remarks

